RESUMO
The central nervous system (CNS) represents a site of sanctuary for many metastatic tumors when systemic therapies that control the primary tumor cannot effectively penetrate intracranial lesions. Non-small cell lung cancers (NSCLCs) are the most likely of all neoplasms to metastasize to the brain, with up to 60% of patients developing CNS metastases during the disease process. Targeted therapies such as tyrosine kinase inhibitors (TKIs) have helped reduce lung cancer mortality but vary considerably in their capacity to control CNS metastases. The ability of these therapies to effectively target lesions in the CNS depends on several of their pharmacokinetic properties, including blood-brain barrier permeability, affinity for efflux transporters, and binding affinity for both plasma and brain tissue. Despite the existence of numerous preclinical models with which to characterize these properties, many targeted therapies have not been rigorously tested for CNS penetration during the discovery process, whereas some made it through preclinical testing despite poor brain penetration kinetics. Several TKIs have now been engineered with the characteristics of CNS-penetrant drugs, with clinical trials proving these efforts fruitful. This Review outlines the extent and variability of preclinical evidence for the efficacy of NSCLC-targeted therapies, which have been approved by the US Food and Drug Administration (FDA) or are in development, for treating CNS metastases, and how these data correlate with clinical outcomes.
Assuntos
Neoplasias do Sistema Nervoso Central , Terapia de Alvo Molecular , Humanos , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/secundário , Neoplasias do Sistema Nervoso Central/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologiaRESUMO
BACKGROUND: Metabolic plasticity mediates breast cancer survival, growth, and immune evasion during metastasis. However, how tumor cell metabolism is influenced by and feeds back to regulate breast cancer progression are not fully understood. We identify hypoxia-mediated suppression of pyruvate carboxylase (PC), and subsequent induction of lactate production, as a metabolic regulator of immunosuppression. METHODS: We used qPCR, immunoblot, and reporter assays to characterize repression of PC in hypoxic primary tumors. Steady state metabolomics were used to identify changes in metabolite pools upon PC depletion. In vivo tumor growth and metastasis assays were used to evaluate the impact of PC manipulation and pharmacologic inhibition of lactate transporters. Immunohistochemistry, flow cytometry, and global gene expression analyzes of tumor tissue were employed to characterize the impact of PC depletion on tumor immunity. RESULTS: PC is essential for metastatic colonization of the lungs. In contrast, depletion of PC in tumor cells promotes primary tumor growth. This effect was only observed in immune competent animals, supporting the hypothesis that repression of PC can suppress anti-tumor immunity. Exploring key differences between the pulmonary and mammary environments, we demonstrate that hypoxia potently downregulated PC. In the absence of PC, tumor cells produce more lactate and undergo less oxidative phosphorylation. Inhibition of lactate metabolism was sufficient to restore T cell populations to PC-depleted mammary tumors. CONCLUSIONS: We present a dimorphic role for PC in primary mammary tumors vs. pulmonary metastases. These findings highlight a key contextual role for PC-directed lactate production as a metabolic nexus connecting hypoxia and antitumor immunity.
Assuntos
Neoplasias da Mama , Piruvato Carboxilase , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Animais , Feminino , Camundongos , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Regulação Neoplásica da Expressão Gênica , Hipóxia Celular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Tolerância ImunológicaRESUMO
Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR. Each intervention generated weight and fat loss and suppressed tumor growth relative to obese mice (greatest suppression with CR). VSG and CR regimens exerted both similar and unique effects, as assessed using multiomics approaches, in reversing obesity-associated transcript, epigenetics, secretome, and microbiota changes and restoring antitumor immunity. Thus, in a murine model of TNBC, bariatric surgery and CR each reverse obesity-driven tumor growth via shared and distinct antitumor mechanisms, and CR is superior to VSG in reversing obesity's procancer effects.
Assuntos
Cirurgia Bariátrica , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Restrição Calórica , Modelos Animais de Doenças , Obesidade/complicações , Obesidade/cirurgiaRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the United States, and effective therapies for PDAC are currently lacking. Moreover, PDAC is promoted and exacerbated by obesity, while cachexia and sarcopenia are exceptionally common comorbidities that predict both poor survival and treatment response. Managing PDAC with immunotherapies has thus far proven ineffective, partly due to the metabolically hostile tumor microenvironment. ß-hydroxy-ß-methylbutyrate (HMB), a metabolite of leucine commonly used as a dietary supplement to boost muscle growth and immune function, may be an attractive candidate to augment PDAC therapy. We therefore sought to test the hypothesis that HMB would enhance antitumor immunity while protecting mouse muscle mass. Control and diet-induced obese C57BL/6 male mice bearing subcutaneously injected Panc02 tumors were supplemented with 1% HMB and treated with or without 50 mg/kg gemcitabine (n = 15/group). HMB was associated with reduced muscle inflammation and increased muscle fiber size. HMB also reduced tumor growth and promoted antitumor immunity in obese, but not lean, mice, independent of the gemcitabine treatment. Separately, in lean tumor-bearing mice, HMB supplementation promoted an anti-PD1 immunotherapy response (n = 15/group). Digital cytometry implicated the decreased abundance of M2-like macrophages in PDAC tumors, an effect that was enhanced by anti-PD1 immunotherapy. We confirmed that HMB augments M1-like macrophage (antitumor) polarization. These preclinical findings suggest that HMB has muscle-sparing and antitumor activities against PDAC in the context of obesity, and that it may sensitize otherwise nonresponsive PDAC to immunotherapy.
RESUMO
BACKGROUND: Triple-negative breast cancers (TNBCs), accounting for approximately 15% of breast cancers, lack targeted therapy. A hallmark of cancer is metabolic reprogramming, with one-carbon metabolism essential to many processes altered in tumor cells, including nucleotide biosynthesis and antioxidant defenses. We reported that folate deficiency via folic acid (FA) withdrawal in several TNBC cell lines results in heterogenous effects on cell growth, metabolic reprogramming, and mitochondrial impairment. To elucidate underlying drivers of TNBC sensitivity to folate stress, we characterized in vivo and in vitro responses to FA restriction in two TNBC models differing in metastatic potential and innate mitochondrial dysfunction. METHODS: Metastatic MDA-MB-231 cells (high mitochondrial dysfunction) and nonmetastatic M-Wnt cells (low mitochondrial dysfunction) were orthotopically injected into mice fed diets with either 2 ppm FA (control), 0 ppm FA, or 12 ppm FA (supplementation; in MDA-MB-231 only). Tumor growth, metabolomics, and metabolic gene expression were assessed. MDA-MB-231 and M-Wnt cells were also grown in media with 0 or 2.2 µM FA; metabolic alterations were assessed by extracellular flux analysis, flow cytometry, and qPCR. RESULTS: Relative to control, dietary FA restriction decreased MDA-MB-231 tumor weight and volume, while FA supplementation minimally increased MDA-MB-231 tumor weight. Metabolic studies in vivo and in vitro using MDA-MB-231 cells showed FA restriction remodeled one-carbon metabolism, nucleotide biosynthesis, and glucose metabolism. In contrast to findings in the MDA-MB-231 model, FA restriction in the M-Wnt model, relative to control, led to accelerated tumor growth, minimal metabolic changes, and modest mitochondrial dysfunction. Increased mitochondrial dysfunction in M-Wnt cells, induced via chloramphenicol, significantly enhanced responsiveness to the cytotoxic effects of FA restriction. CONCLUSIONS: Given the lack of targeted treatment options for TNBC, uncovering metabolic vulnerabilities that can be exploited as therapeutic targets is an important goal. Our findings suggest that a major driver of TNBC sensitivity to folate restriction is a high innate level of mitochondrial dysfunction, which can increase dependence on one-carbon metabolism. Thus, folate deprivation or antifolate therapy for TNBCs with metabolic inflexibility due to their elevated levels of mitochondrial dysfunction may represent a novel precision-medicine strategy.
Assuntos
Dietoterapia/métodos , Ácido Fólico/administração & dosagem , Neoplasias Mamárias Experimentais/dietoterapia , Neoplasias de Mama Triplo Negativas/dietoterapia , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
Cancer cells experience unique and dynamic shifts in their metabolic function in order to survive, proliferate, and evade growth inhibition in the resource-scarce tumor microenvironment. Therefore, identification of pharmacological agents with potential to reprogram cancer cell metabolism may improve clinical outcomes in cancer therapy. Cancer cells also often exhibit an increased dependence on the process known as autophagy, both for baseline survival and as a response to stressors such as chemotherapy or a decline in nutrient availability. There is evidence to suggest that this increased dependence on autophagy in cancer cells may be exploitable clinically by combining autophagy modulators with existing chemotherapies. In light of the increased metabolic rate in cancer cells, interest is growing in approaches aimed at "starving" cancer through dietary and pharmacologic interventions that reduce availability of nutrients and pro-growth hormonal signals known to promote cancer progression. Several dietary approaches, including chronic calorie restriction and multiple forms of fasting, have been investigated for their potential anti-cancer benefits, yielding promising results in animal models. Induction of autophagy in response to dietary energy restriction may underlie some of the observed benefit. However, while interventions based on dietary energy restriction have demonstrated safety in clinical trials, uncertainty remains regarding translation to humans as well as feasibility of achieving compliance due to the potential discomfort and weight loss that accompanies dietary restriction. Further induction of autophagy through dietary or pharmacologic metabolic reprogramming interventions may enhance the efficacy of autophagy inhibition in the context of adjuvant or neo-adjuvant chemotherapy. Nonetheless, it remains unclear whether therapeutic agents aimed at autophagy induction, autophagy inhibition, or both are a viable therapeutic strategy for improving cancer outcomes. This review discusses the literature available for the therapeutic potential of these approaches.
RESUMO
Immune checkpoint inhibitor (ICI) therapy has shown extraordinary promise at treating cancers otherwise resistant to treatment. However, for ICI therapy to be effective, it must overcome the metabolic limitations of the tumor microenvironment. Tumor metabolism has long been understood to be highly dysregulated, with potent immunosuppressive effects. Moreover, T cell activation and longevity within the tumor microenvironment are intimately tied to T cell metabolism and are required for the long-term efficacy of ICI therapy. We discuss in this review the intersection of metabolic competition in the tumor microenvironment, T cell activation and metabolism, the roles of tumor cell metabolism in immune evasion, and the impact of host metabolism in determining immune surveillance and ICI therapy outcomes. We also discussed the effects of obesity and calorie restriction-two important systemic metabolic perturbations that impact intrinsic metabolic pathways in T cells as well as cancer cells.