Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255244

RESUMO

The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.

2.
Nucleic Acids Res ; 51(11): 5864-5882, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207342

RESUMO

The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.


Assuntos
Candida albicans , DNA Mitocondrial , Proteínas de Ligação a DNA , Proteínas Fúngicas , Humanos , Candida albicans/genética , Candida albicans/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/metabolismo
3.
ACS Omega ; 8(1): 1026-1036, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643441

RESUMO

Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.

4.
Sci Rep ; 12(1): 18972, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348038

RESUMO

Significant efforts have been done in last two decades to develop nanoscale spectroscopy techniques owning to their great potential for single-molecule structural detection and in addition, to resolve open questions in heterogeneous biological systems, such as protein-DNA complexes. Applying IR-AFM technique has become a powerful leverage for obtaining simultaneous absorption spectra with a nanoscale spatial resolution for studied proteins, however the AFM-IR investigation of DNA molecules on surface, as a benchmark for a nucleoprotein complexes nanocharacterization, has remained elusive. Herein, we demonstrate methodological approach for acquisition of AFM-IR mapping modalities with corresponding absorption spectra based on two different DNA deposition protocols on spermidine and Ni2+ pretreated mica surface. The nanoscale IR absorbance of distinctly formed DNA morphologies on mica are demonstrated through series of AFM-IR absorption maps with corresponding IR spectrum. Our results thus demonstrate the sensitivity of AFM-IR nanospectroscopy for a nucleic acid research with an open potential to be employed in further investigation of nucleoprotein complexes.


Assuntos
Silicatos de Alumínio , DNA , Microscopia de Força Atômica/métodos , Silicatos de Alumínio/química , Nucleoproteínas , Espectrofotometria Infravermelho/métodos
5.
Int J Biol Macromol ; 220: 360-370, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932808

RESUMO

This work aims to synthesize polygalacturonate-based magnetic iron oxide nanoparticles (INP-polyGalA). The synthesis consists of the diffusion of both Fe2+ and Fe3+ at a molar ratio of 1:2 through polyGalA solution followed by the addition of an alkaline solution. To form individual nanoparticle materials, the polyGalA concentration needs to be below its overlapping concentration (C*). The synthesized materials (INP-polyGalA) contain about 45% of organic compound (polyGalA), and they have an average particle size ranging from 10 to 50 nm as estimated by several techniques (DLS, TEM and AFM) and their surfaces are negatively charged in pH range 2 to 7. The synthesized NPs showed magnetic characteristics, thanks to the formation of magnetite (Fe3O4) as confirmed by X-ray diffractions (XRD). Moreover, AFM combined with Infra-red mapping allowed us to conclude that polyGalA is located in the core of the nanoparticles but also on their surfaces. More specially, both carboxylate (COO-) and carboxylic (COOH) groups of polyGalA are observed on the NPs surfaces. The presence of such functional groups allowed the synthesized material to (i) bind through the electrostatic interactions methylene blue (MB) which may have a great potential for r pollution control or (ii) to form hydrogel beads (ionotropic gelation) by using calcium as a crosslinking agent which can be used to encapsulate active molecules and target their release by using an external stimulus (magnetic field).


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Cálcio , Óxido Ferroso-Férrico , Hidrogéis , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/química , Azul de Metileno
6.
Methods Mol Biol ; 2113: 319-327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006322

RESUMO

Atomic force and transmission electron microscopies (AFM/TEM) are powerful tools to analyze RNA-based nanostructures. While cryo-TEM analysis allows the determination of near-atomic resolution structures of large RNA complexes, this chapter intends to present how RNA nanostructures can be analyzed at room temperature on surfaces. Indeed, TEM and AFM analyses permit the conformation of a large population of individual molecular structures to be observed, providing a statistical basis for the variability of these nanostructures within the population. Nevertheless, if double-stranded DNA molecular imaging has been described extensively, only a few investigations of single-stranded DNA and RNA filaments have been conducted so far. Indeed, technique for spreading and adsorption of ss-molecules on AFM surfaces or TEM grids is a crucial step to avoid disturbing RNA conformation on the surface. In this chapter, we present a specific method to analyze RNA assemblies and RNA-protein complexes for molecular microscopies.


Assuntos
Imagem Molecular/métodos , RNA/química , Ribonucleoproteínas/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Conformação de Ácido Nucleico
7.
Methods Mol Biol ; 1805: 251-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971722

RESUMO

Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are powerful tools to study the behavior of various actors in homologous recombination including molecular motors such as recombinases and helicases/translocases. Here we present specific approaches developed in terms of sample preparation and imaging methods to contribute to the understanding of homologous recombination process and its regulation focusing on the interplay between recombinases and other related proteins such as mediators or antirecombinase actors.Homologous recombination (HR) is a high-fidelity DNA repair pathway since it uses a homologous DNA as template. Recombinases such as RecA in bacteria, RadA in archaea, and Rad51 in eukaryotes are key proteins in the HR pathway: HR is initiated with formation of an ssDNA overhang on which recombinases polymerize and form a dynamic active nucleoprotein filament able to search for homology and to exchange DNA strand in an ATP-dependent manner. We provide practical methods to analyze presynaptic filament formation on ssDNA, its composition and regulation in presence of mediator partners, antirecombinase activity of translocase, and chromatin remodeling events.


Assuntos
Recombinação Homóloga , Microscopia/métodos , Recombinases/metabolismo , Montagem e Desmontagem da Cromatina , DNA/ultraestrutura , Quebras de DNA de Cadeia Simples , Humanos , Microscopia de Força Atômica , Nucleossomos/metabolismo , Polimerização , Proteínas/metabolismo
8.
DNA Repair (Amst) ; 64: 10-25, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475157

RESUMO

The base excision repair (BER) pathway consists of sequential action of DNA glycosylase and apurinic/apyrimidinic (AP) endonuclease necessary to remove a damaged base and generate a single-strand break in duplex DNA. Human multifunctional AP endonuclease 1 (APE1, a.k.a. APEX1, HAP-1, or Ref-1) plays essential roles in BER by acting downstream of DNA glycosylases to incise a DNA duplex at AP sites and remove 3'-blocking sugar moieties at DNA strand breaks. Human 8-oxoguanine-DNA glycosylase (OGG1), methyl-CpG-binding domain 4 (MBD4, a.k.a. MED1), and alkyl-N-purine-DNA glycosylase (ANPG, a.k.a. Aag or MPG) excise a variety of damaged bases from DNA. Here we demonstrated that the redox-deficient truncated APE1 protein lacking the first N-terminal 61 amino acid residues (APE1-NΔ61) cannot stimulate DNA glycosylase activities of OGG1, MBD4, and ANPG on duplex DNA substrates. Electron microscopy imaging of APE1-DNA complexes revealed oligomerization of APE1 along the DNA duplex and APE1-mediated DNA bridging followed by DNA aggregation. APE1 polymerizes on both undamaged and damaged DNA in cooperative mode. Association of APE1 with undamaged DNA may enable scanning for damage; however, this event reduces effective concentration of the enzyme and subsequently decreases APE1-catalyzed cleavage rates on long DNA substrates. We propose that APE1 oligomers on DNA induce helix distortions thereby enhancing molecular recognition of DNA lesions by DNA glycosylases via a conformational proofreading/selection mechanism. Thus, APE1-mediated structural deformations of the DNA helix stabilize the enzyme-substrate complex and promote dissociation of human DNA glycosylases from the AP site with a subsequent increase in their turnover rate. SIGNIFICANCE STATEMENT: The major human apurinic/apyrimidinic (AP) endonuclease, APE1, stimulates DNA glycosylases by increasing their turnover rate on duplex DNA substrates. At present, the mechanism of the stimulation remains unclear. We report that the redox domain of APE1 is necessary for the active mode of stimulation of DNA glycosylases. Electron microscopy revealed that full-length APE1 oligomerizes on DNA possibly via cooperative binding to DNA. Consequently, APE1 shows DNA length dependence with preferential repair of short DNA duplexes. We propose that APE1-catalyzed oligomerization along DNA induces helix distortions, which in turn enable conformational selection and stimulation of DNA glycosylases. This new biochemical property of APE1 sheds light on the mechanism of redox function and its role in DNA repair.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Domínios e Motivos de Interação entre Proteínas , DNA/química , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Humanos , Conformação de Ácido Nucleico
9.
Chem Rec ; 18(7-8): 849-857, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29286197

RESUMO

Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Silicatos de Magnésio/química , Nanoestruturas/química , Adsorção , Animais , DNA/metabolismo , Humanos , Silicatos de Magnésio/metabolismo , Silicatos de Magnésio/toxicidade , Nanoestruturas/toxicidade , Tamanho da Partícula , Estudo de Prova de Conceito , Proteínas/química
10.
Sci Rep ; 7(1): 5586, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717157

RESUMO

Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier because it can be naturally internalized into mammalian cells, due to its nano-size dimension. Therefore, deciphering the mechanisms of sepiolite cell internalization constitutes a question interesting biotechnology, for the use of sepiolite as nanocarrier, as well as environmental and public health concerns. Though it is low, the perfectly stable and natural intrinsic fluorescence of sepiolite nanofibers allows to follow their fate into cells by specifically sensitive technics. By combining fluorescence microscopy (including confocal analysis), time-lapse video microscopy, fluorescence activated cell sorting and transmission electron microscopy, we show that sepiolite can be spontaneously internalized into mammalian cells through both non-endocytic and endocytic pathways, macropinocytosis being one of the main pathways. Interestingly, exposure of the cells to endocytosis inhibitors, such as chloroquine, two-fold increase the efficiency of sepiolite-mediated gene transfer, in addition to the 100-fold increased resulting from sepiolite sonomechanical treatment. As sepiolite is able to bind various biological molecules, this nanoparticulate silicate could be a good candidate as a nanocarrier for simultaneous vectorization of diverse biological molecules.


Assuntos
DNA/química , DNA/genética , Portadores de Fármacos/química , Silicatos de Magnésio/química , Transfecção/métodos , Animais , Células CHO , Linhagem Celular , Separação Celular , Cloroquina/farmacologia , Cricetulus , Endocitose , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Imagem com Lapso de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...