Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32297, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947432

RESUMO

The authentication process involves all the supply chain stakeholders, and it is also adopted to verify food quality and safety. Food authentication tools are an essential part of traceability systems as they provide information on the credibility of origin, species/variety identity, geographical provenance, production entity. Moreover, these systems are useful to evaluate the effect of transformation processes, conservation strategies and the reliability of packaging and distribution flows on food quality and safety. In this manuscript, we identified the innovative characteristics of food authentication systems to respond to market challenges, such as the simplification, the high sensitivity, and the non-destructive ability during authentication procedures. We also discussed the potential of the current identification systems based on molecular markers (chemical, biochemical, genetic) and the effectiveness of new technologies with reference to the miniaturized systems offered by nanotechnologies, and computer vision systems linked to artificial intelligence processes. This overview emphasizes the importance of convergent technologies in food authentication, to support molecular markers with the technological innovation offered by emerging technologies derived from biotechnologies and informatics. The potential of these strategies was evaluated on real examples of high-value food products. Technological innovation can therefore strengthen the system of molecular markers to meet the current market needs; however, food production processes are in profound evolution. The food 3D-printing and the introduction of new raw materials open new challenges for food authentication and this will require both an update of the current regulatory framework, as well as the development and adoption of new analytical systems.

2.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765932

RESUMO

In this paper, different machine learning methodologies have been evaluated for the estimation of the multiple soil characteristics of a continental-wide area corresponding to the European region, using multispectral Sentinel-3 satellite imagery and digital elevation model (DEM) derivatives. The results confirm the importance of multispectral imagery in the estimation of soil properties and specifically show that the use of DEM derivatives improves the quality of the estimates, in terms of R2, by about 19% on average. In particular, the estimation of soil texture increases by about 43%, and that of cation exchange capacity (CEC) by about 65%. The importance of each input source (multispectral and DEM) in predicting the soil properties using machine learning has been traced back. It has been found that, overall, the use of multispectral features is more important than the use of DEM derivatives with a ration, on average, of 60% versus 40%.

3.
Sensors (Basel) ; 23(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37112129

RESUMO

Precision agriculture has emerged as a promising approach to improve crop productivity and reduce the environmental impact. However, effective decision making in precision agriculture relies on accurate and timely data acquisition, management, and analysis. The collection of multisource and heterogeneous data for soil characteristics estimation is a critical component of precision agriculture, as it provides insights into key factors, such as soil nutrient levels, moisture content, and texture. To address these challenges, this work proposes a software platform that facilitates the collection, visualization, management, and analysis of soil data. The platform is designed to handle data from various sources, including proximity, airborne, and spaceborne data, to enable precision agriculture. The proposed software allows for the integration of new data, including data that can be collected directly on-board the acquisition device, and it also allows for the incorporation of custom predictive systems for soil digital mapping. The usability experiments conducted on the proposed software platform demonstrate that it is easy to use and effective. Overall, this work highlights the importance of decision support systems in the field of precision agriculture and the potential benefits of using such systems for soil data management and analysis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32365026

RESUMO

In this work we present SpliNet, a novel CNNbased method that estimates a global color transform for the enhancement of raw images. The method is designed to improve the perceived quality of the images by reproducing the ability of an expert in the field of photo editing. The transformation applied to the input image is found by a convolutional neural network specifically trained for this purpose. More precisely, the network takes as input a raw image and produces as output one set of control points for each of the three color channels. Then, the control points are interpolated with natural cubic splines and the resulting functions are globally applied to the values of the input pixels to produce the output image. Experimental results compare favorably against recent methods in the state of the art on the MIT-Adobe FiveK dataset. Furthermore, we also propose an extension of the SpliNet in which a single neural network is used to model the style of multiple reference retouchers by embedding them into a user space. The style of new users can be reproduced without retraining the network, after a quick modeling stage in which they are positioned in the user space on the basis of their preferences on a very small set of retouched images.

5.
Sensors (Basel) ; 18(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329268

RESUMO

Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...