Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 156077, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597351

RESUMO

Plastics pose a major threat to aquatic ecosystems especially in smaller size fractions. Salt marshes play a crucial role in maintaining the coastal zone and aquatic food web, yet their contamination, including by plastic materials, is still poorly investigated. This work investigated meso- (MEP, 5-25 mm) and microplastic (MIP, 1 µm-5 mm) contamination of a salt marsh, which reached average levels of 279.63 ± 410.12 items kg-1, 366.92 ± 975.18 items kg-1, and 8.89 ± 8.75 items L-1 in surface sediment, sediment cores and water, respectively. Photomicrographs revealed a complex fouling community on plastics surface for both different salt marsh zones and plastic formats. Abundance of plastics in sediment was higher in the dryer, vegetated zones compared to flooded, unvegetated zones. This is consistent with the role of vegetation as a trap for solid litter and final fate of plastic deposition, but also with local hydrodynamics influencing deposition pattern. Plastics were detected up to 66 cm-depth, presenting higher levels at surface sediments. It was also possible to identify the main groups of microorganisms (1638 bacterial cells, 318 microalgae cells, and 20049.93 µm2 of filamentous fungi) composing the Plastisphere communities on all plastic items recorded in the different zones. These results are a pioneer contribution, highlighting that regional salt marshes participate in sequestration and longstanding accumulation of plastic particles in estuarine environments, before exportation to the ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Environ Pollut ; 285: 117647, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380228

RESUMO

The presence of solid litter and its consequences for coastal ecosystems is now being investigated around the world. Different types of material can be discarded in areas such as salt marshes, and various fouling organisms can associate with such items forming the Plastisphere. This study investigated the distribution of solid litter along zones (dry, middle, flooded) of a salt marsh environment in the Patos Lagoon Estuary (South Brazil) and the association of biofouling organisms with these items. Solid litter quantities were significantly higher in the dry zone when compared to the middle and flooded zones, showing an accumulation area where the water rarely reaches. Most items were made of plastic, as shown for many other coastal areas, and originated from food packaging, fishery and shipping activities and personal use. Although not statistically significant, there was a tendency of increased biofouling towards the flooded zone. Thirteen groups were found in association with solid litter items, mainly algae, amphipods, and gastropods. The preference for salt marsh zones, types of material and items' colour was highly variable among groups of organisms, which can be related to their varied physiological requirements. In summary, significant plastic contamination of salt marshes of the Patos Lagoon was associated with a heterogeneous distribution of fouling communities.


Assuntos
Incrustação Biológica , Áreas Alagadas , Brasil , Ecossistema , Plásticos
3.
Mar Pollut Bull ; 141: 569-572, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955769

RESUMO

The strandline is one of the first deposition habitats of microplastics before they are integrated to the beach as a standing stock or finally removed. Beaches, entirely or partially protected by beachrocks, have different sediment dynamics and therefore may present variation in microplastic deposition. The aim of this work was to test if protected and unprotected (i.e., exposed to waves) areas of a sandy beach present different microplastic accumulation on the strandline - a habitat greatly influenced by both water and sediment dynamics. Microplastic (MP) amounts were significantly higher at the protected area (Mprotected = 642.6 ±â€¯514.8 MP m-2, Mexposed = 130.6 ±â€¯126.8 MP m-2, Mann-Whitney U test, U = 14.5, p = 0.0009), showing that beachrocks influence microplastic accumulation on the beach face. Therefore, hard structures parallel to the beach may also affect microplastics deposition on beach sediments, being important to consider these structures on microplastic surveys.


Assuntos
Praias , Plásticos/análise , Poluentes Químicos da Água/análise , Brasil , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos
4.
Environ Microbiol Rep ; 8(5): 675-679, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27119160

RESUMO

Amphibians are in decline as a result of habitat destruction, climate change and infectious diseases. Tadpoles are thought susceptible to infections because they are dependent on only an innate immune system (e.g. macrophages). This is because the frog adaptive immune system does not function until later stages of their life cycle. In 1920, Nöller described a putative infectious agent of tadpoles named Nematopsis temporariae, which he putatively assigned to gregarine protists (Apicomplexa). Here, we identify a gregarine infection of tadpoles using both microscopy and ribosomal DNA sequencing of three different frog species (Rana temporaria, R. dalmatina, and Hyla arborea). We show that this protist lineage belongs to the subclass Gregarinasina Dufour 1828 and is regularly present in macrophages located in liver sinusoids of tadpoles, confirming the only known case of a gregarine infection of a vertebrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...