Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1425953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119516

RESUMO

Introduction: Biofouling poses a significant economic threat to various marine industries, leading to financial losses that can reach billions of euros annually. This study highlights the urgent need for effective alternatives to traditional antifouling agents, particularly following the global ban on organotin compounds. Material and methods: Streptomyces aculeolatus PTM-346 was isolated from sediment samples on the shores of the Madeira Archipelago, Portugal. The crude extract was fractionated using silica flash chromatography and preparative HPLC, resulting in two isolated marinone compounds: madeirone (1), a novel marinone derivative discovered in this study, and neomarinone (2). The antifouling activities of these compounds were tested against five marine bacterial species and the larvae of the mussel Mytilus galloprovincialis. Additionally, in silico and in vivo environmental toxicity evaluations of madeirone (1) and neomarinone (2) were conducted. Results: Madeirone (1) demonstrated significant antibiofilm efficacy, inhibiting Phaeobacter inhibens by up to 66%, Marinobacter hydrocarbonoclasticus by up to 60%, and Cobetia marina by up to 40%. Neomarinone (2) also exhibited substantial antibiofilm activity, with inhibition rates of up to 41% against P. inhibens, 40% against Pseudo-oceanicola batsensis, 56% against M. hydrocarbonoclasticus, 46% against C. marina, and 40% against Micrococcus luteus. The growth inhibition activity at the same concentrations of these compounds remained below 20% for the respective bacteria, highlighting their effectiveness as potent antibiofilm agents without significantly affecting bacterial viability. Additionally, both compounds showed potent effects against the settlement of Mytilus galloprovincialis larvae, with EC50 values of 1.76 µg/mL and 0.12 µg/mL for compounds (1) and (2), respectively, without impairing the viability of the targeted macrofouling species. In silico toxicity predictions and in vivo toxicity assays both support their potential for further development as antifouling agents. Conclusion: The newly discovered metabolite madeirone (1) and neomarinone (2) effectively inhibit both micro- and macrofouling. This distinct capability sets them apart from existing commercial antifouling agents and positions them as promising candidates for biofouling prevention. Consequently, these compounds represent a viable and environmentally friendly alternative for incorporation into paints, primers, varnishes, and sealants, offering significant advantages over traditional copper-based compounds.

2.
Ecotoxicol Environ Saf ; 232: 113213, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085885

RESUMO

Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. ß-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere.


Assuntos
Plásticos , Água do Mar , Bactérias/genética , RNA Ribossômico 16S/genética , Rios , Água do Mar/microbiologia
3.
Chemosphere ; 272: 129814, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582508

RESUMO

Human activities are the leading cause of environmental impairments. Appropriate biomonitoring of ecosystems is needed to assess these activities effectively. In freshwater ecosystems, periphytic and epilithic biofilms have diatom assemblages. These assemblages respond rapidly to environmental changes, making diatoms valuable bioindicators. For this reason, freshwater biomonitoring programs are currently using diatoms (e.g., Water Framework Directive). In the past ten years, DNA metabarcoding coupled with next-generation sequencing and bioinformatics represents a complementary approach for diatom biomonitoring. In this study, this approach is used for the first time in Cyprus by considering the association of environmental and anthropogenic pressures to diatom assemblages. Statistical analysis was then applied to identify the environmental (i.e., river types, geo-morphological) and anthropogenic (i.e., physicochemical, human land-use pressures) variables' role in the observed diatom diversity. Results indicate differences in diatom assemblages between intermittent and perennial rivers. Achnanthidium minutissimum was more abundant in intermittent rivers; whereas Amphora pediculus and Planothidium caputium in perennial ones. Additionally, we could demonstrate the correlation between nutrients (e.g., nitrogen, phosphorus), stations' local characteristics (e.g., elevation), and land use activities on the observed differences in diatom diversity. Finally, we conclude that multi-stressors and anthropogenic pressures together as multiple stressors have a significant statistical relationship to the observed diatom diversity and play a pivotal role in determining Cyprus' rivers' ecological status.


Assuntos
Diatomáceas , Rios , Chipre , Código de Barras de DNA Taxonômico , Diatomáceas/genética , Ecossistema , Monitoramento Ambiental , Humanos
4.
Proc Natl Acad Sci U S A ; 115(49): 12519-12524, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455305

RESUMO

The type VI secretion system (T6SS) is a supramolecular complex involved in the delivery of potent toxins during bacterial competition. Pseudomonas aeruginosa possesses three T6SS gene clusters and several hcp and vgrG gene islands, the latter encoding the spike at the T6SS tip. The vgrG1b cluster encompasses seven genes whose organization and sequences are highly conserved in P. aeruginosa genomes, except for two genes that we called tse7 and tsi7 We show that Tse7 is a Tox-GHH2 domain nuclease which is distinct from other T6SS nucleases identified thus far. Expression of this toxin induces the SOS response, causes growth arrest and ultimately results in DNA degradation. The cytotoxic domain of Tse7 lies at its C terminus, while the N terminus is a predicted PAAR domain. We find that Tse7 sits on the tip of the VgrG1b spike and that specific residues at the PAAR-VgrG1b interface are essential for VgrG1b-dependent delivery of Tse7 into bacterial prey. We also show that the delivery of Tse7 is dependent on the H1-T6SS cluster, and injection of the nuclease into bacterial competitors is deployed for interbacterial competition. Tsi7, the cognate immunity protein, protects the producer from the deleterious effect of Tse7 through a direct protein-protein interaction so specific that toxin/immunity pairs are effective only if they originate from the same P. aeruginosa isolate. Overall, our study highlights the diversity of T6SS effectors, the exquisite fitting of toxins on the tip of the T6SS, and the specificity in Tsi7-dependent protection, suggesting a role in interstrain competition.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/fisiologia , Proteínas de Bactérias/genética , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética
5.
J Biol Chem ; 293(23): 8829-8842, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29599293

RESUMO

The bacterial type VI secretion system (T6SS) delivers effectors into eukaryotic host cells or toxins into bacterial competitor for survival and fitness. The T6SS is positively regulated by the threonine phosphorylation pathway (TPP) and negatively by the T6SS-accessory protein TagF. Here, we studied the mechanisms underlying TagF-mediated T6SS repression in two distinct bacterial pathogens, Agrobacterium tumefaciens and Pseudomonas aeruginosa. We found that in A. tumefaciens, T6SS toxin secretion and T6SS-dependent antibacterial activity are suppressed by a two-domain chimeric protein consisting of TagF and PppA, a putative phosphatase. Remarkably, this TagF domain is sufficient to post-translationally repress the T6SS, and this inhibition is independent of TPP. This repression requires interaction with a cytoplasmic protein, Fha, critical for activating T6SS assembly. In P. aeruginosa, PppA and TagF are two distinct proteins that repress T6SS in TPP-dependent and -independent pathways, respectively. P. aeruginosa TagF interacts with Fha1, suggesting that formation of this complex represents a conserved TagF-mediated regulatory mechanism. Using TagF variants with substitutions of conserved amino acid residues at predicted protein-protein interaction interfaces, we uncovered evidence that the TagF-Fha interaction is critical for TagF-mediated T6SS repression in both bacteria. TagF inhibits T6SS without affecting T6SS protein abundance in A. tumefaciens, but TagF overexpression reduces the protein levels of all analyzed T6SS components in P. aeruginosa Our results indicate that TagF interacts with Fha, which in turn could impact different stages of T6SS assembly in different bacteria, possibly reflecting an evolutionary divergence in T6SS control.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Mapas de Interação de Proteínas , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Mutagênese Sítio-Dirigida , Fosforilação , Tumores de Planta/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/química , Sistemas de Secreção Tipo VI/genética
6.
Sci Rep ; 6: 33341, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27686865

RESUMO

Type III secretion systems (T3SSs) are essential devices in the virulence of many Gram-negative bacterial pathogens. They mediate injection of protein effectors of virulence from bacteria into eukaryotic host cells to manipulate them during infection. T3SSs involved in virulence (vT3SSs) are evolutionarily related to bacterial flagellar protein export apparatuses (fT3SSs), which are essential for flagellar assembly and cell motility. The structure of the external and transmembrane parts of both fT3SS and vT3SS is increasingly well-defined. However, the arrangement of their cytoplasmic and inner membrane export apparatuses is much less clear. Here we compare the architecture of the cytoplasmic regions of the vT3SSs of Shigella flexneri and the vT3SS and fT3SS of Salmonella enterica serovar Typhimurium at ~5 and ~4 nm resolution using electron cryotomography and subtomogram averaging. We show that the cytoplasmic regions of vT3SSs display conserved six-fold symmetric features including pods, linkers and an ATPase complex, while fT3SSs probably only display six-fold symmetry in their ATPase region. We also identify other morphological differences between vT3SSs and fT3SSs, such as relative disposition of their inner membrane-attached export platform, C-ring/pods and ATPase complex. Finally, using classification, we find that both types of apparatuses can loose elements of their cytoplasmic region, which may therefore be dynamic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...