Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Crit Care Med (Targu Mures) ; 9(4): 262-270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37969877

RESUMO

Background: Though laboratory tests have been shown to predict mortality in COVID-19, there is still a dearth of information regarding the role of biochemical parameters in predicting the type of ventilatory support that these patients may require. Methods: The purpose of our retrospective observational study was to investigate the relationship between biochemical parameters and the type of ventilatory support needed for the intensive care of severely ill COVID-19 patients. We comprehensively recorded history, physical examination, vital signs from point-of-care testing (POCT) devices, clinical diagnosis, details of the ventilatory support required in intensive care and the results of the biochemical analysis at the time of admission. Appropriate statistical methods were used and P-values < 0.05 were considered significant. Receiver operating characteristics (ROC) analysis was performed and Area Under the Curve (AUC) of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9, respectively, were regarded as acceptable, fair, good, and exceptional for discrimination. Results: Statistically significant differences (p<0.05) in Urea (p = 0.0351), Sodium (p = 0.0142), Indirect Bilirubin (p = 0.0251), Albumin (p = 0.0272), Aspartate Transaminase (AST) (p = 0.0060) and Procalcitonin (PCT) (p = 0.0420) were observed between the patients who were maintained on non-invasive ventilations as compared to those who required invasive ventilation. In patients who required invasive ventilation, the levels of Urea, Sodium, Indirect bilirubin, AST and PCT were higher while Albumin was lower. On ROC analysis, higher levels of Albumin was found to be acceptable indicator of maintenance on non-invasive ventilation while higher levels of Sodium and PCT were found to be fair predictor of requirement of invasive ventilation. Conclusion: Our study emphasizes the role of biochemical parameters in predicting the type of ventilatory support that is needed in order to properly manage severely ill COVID-19 patients.

2.
Cureus ; 14(8): e28594, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36185918

RESUMO

Background Prognostication plays a pivotal role in critical care medicine. Its importance is indisputable in the management of coronavirus disease 2019 (COVID-19), as the presentation of this disease may vary from docile, self-limiting symptoms to lethal conditions. Amid the COVID-19 pandemic, much emphasis was initially placed on molecular and serological testing. However, it was realized later that routine laboratory tests also provide key information in terms of the severity of the disease and thus could be used to predict the outcome of these patients. Methodology The aim of our study was to evaluate the biochemical parameters as prognostic markers in severely ill COVID-19 patients. We carried out a retrospective, case-control study. The study population was comprised of all severely ill COVID-19 patients admitted between October 2020 and January 2021 at our level 3 COVID hospital. Cases were defined as the patients who expired despite treatment and all resuscitative measures as per the standard operating procedures (SOPs) of our COVID intensive care unit (ICU) while controls were defined as the patients that were transferred out of the COVID ICU for further recovery. The detailed history, findings of physical examination, vitals recorded by point of care testing (POCT) devices at our ICU, clinical diagnosis, and the results of the biochemical analysis were recorded in a specially designed pro forma. The biochemical parameters recorded at the time of admission were compared between the groups of controls and cases in order to evaluate their role as predictors of mortality using appropriate statistical methods. P-values less than 0.05 were considered statistically significant. For all the parameters that showed a statistically significant difference, receiver operating characteristics (ROC) analysis was done to assess the utility of biochemical parameters as predictors of mortality or survival. Areas under the curve (AUCs) of 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, and >0.9 were considered acceptable, fair, good, and excellent for discrimination, respectively. Results Of the 178 severely ill COVID-19 patients enrolled in the study, 86 were controls and 92 were cases (52% mortality). Serum urea (p<0.0001), creatinine (p=0.0019), aspartate transaminase (AST) (p=0.0104), lactate dehydrogenase (LDH) (p=0.0001), procalcitonin (PCT) (p=0.0344), and interleukin 6 (IL-6) (p=0.0311) levels were significantly higher (p<0.05), while total protein (p=0.0086), albumin (p<0.0001), and indirect bilirubin (p=0.0147) levels were significantly lower (p<0.05) in cases as compared to controls. The difference was statistically insignificant (p>0.05) for serum sodium, potassium, total and direct bilirubin, globulin, alanine transaminase (ALT), alkaline phosphatase (ALP), D-dimer, and ferritin. On ROC analysis, urea was fair (AUC=0.721), creatinine (AUC=0.698) and IL-6 (AUC=0.698) were acceptable predictors of mortality, while albumin (AUC=0.698) was an acceptable predictor of survival in severely ill COVID-19 patients during their intensive care stay. Conclusion Understanding the pathophysiological changes associated with the severity of COVID-19 in terms of an alteration of biochemical parameters is a pressing priority. Our study highlights the importance of routine laboratory tests in predicting outcomes in severely ill COVID-19 patients.

3.
Viral Immunol ; 35(2): 82-111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007431

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which caused the coronavirus disease 2019 (COVID-19) pandemic as declared by the World Health Organization, has created havoc worldwide. The highly transmissible infection can be contained only by accurate diagnosis, quarantining, and exercising social distancing. Therefore, quick and massive deployment of SARS-CoV-2 testing plays a crucial role in the identification and isolation of infected patients. Reverse transcription-polymerase chain reaction is the gold standard for COVID-19 detection; however, it needs expertise, facilities, and time. Hence, for the ease of population-wide screening, serology-based diagnostic assays were introduced. These can help determine the prevalence of infection, understand the epidemiology of the disease, and assist in suitable public health interventions while being user-friendly and less time consuming. Although serological testing kits in markets soared, their sensitivity and specificity were questioned in reports from different parts of the world. In this article, we have reviewed 40 Food and Drug Administration (FDA) and CE-approved clinically evaluated serological kits (8 enzyme-linked immunosorbent assay [ELISA] kits, 10 chemiluminescent immunoassay [CLIA] kits, and 22 lateral flow immunoassay [LFIA] kits) for their sensitivity and specificity and discussed the apparent reasons behind their performance. We observed appreciable sensitivity in the kits detecting total antibodies compared to the kits targeting single isotype antibodies. Tests that determined antibodies against nucleocapsid protein were found to be more sensitive and those detecting antibodies against spike protein were found to have greater specificity. This study was conducted to help the decision-making while acquiring antibody kits and concurrently to be mindful of their shortcomings.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...