Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(7): uhae154, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005998

RESUMO

We developed a novel eight-way tomato multiparental advanced generation intercross (MAGIC) population to improve the accessibility of tomato relatives genetic resources to geneticists and breeders. The interspecific tomato MAGIC population (ToMAGIC) was obtained by intercrossing four accessions each of Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium, which are the weedy relative and the ancestor of cultivated tomato, respectively. The eight exotic ToMAGIC founders were selected based on a representation of the genetic diversity and geographical distribution of the two taxa. The resulting MAGIC population comprises 354 lines, which were genotyped using a new 12k tomato single primer enrichment technology panel and yielded 6488 high-quality single-nucleotide polymorphism (SNPs). The genotyping data revealed a high degree of homozygosity, an absence of genetic structure, and a balanced representation of the founder genomes. To evaluate the potential of the ToMAGIC population, a proof of concept was conducted by phenotyping it for fruit size, plant pigmentation, leaf morphology, and earliness. Genome-wide association studies identified strong associations for the studied traits, pinpointing both previously identified and novel candidate genes near or within the linkage disequilibrium blocks. Domesticated alleles for fruit size were recessive and were found, at low frequencies, in wild/ancestral populations. Our findings demonstrate that the newly developed ToMAGIC population is a valuable resource for genetic research in tomato, offering significant potential for identifying new genes that govern key traits in tomato. ToMAGIC lines displaying a pyramiding of traits of interest could have direct applicability for integration into breeding pipelines providing untapped variation for tomato breeding.

2.
BMC Plant Biol ; 24(1): 560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877388

RESUMO

BACKGROUND: The generation of new eggplant (Solanum melongena L.) cultivars with drought tolerance is a main challenge in the current context of climate change. In this study, the eight parents (seven of S. melongena and one of the wild relative S. incanum L.) of the first eggplant MAGIC (Multiparent Advanced Generation Intercrossing) population, together with four F1 hybrids amongst them, five S5 MAGIC recombinant inbred lines selected for their genetic diversity, and one commercial hybrid were evaluated in young plant stage under water stress conditions (30% field capacity; FC) and control conditions (100% FC). After a 21-day treatment period, growth and biomass traits, photosynthetic pigments, oxidative stress markers, antioxidant compounds, and proline content were evaluated. RESULTS: Significant effects (p < 0.05) were observed for genotype, water treatments and their interaction in most of the traits analyzed. The eight MAGIC population parental genotypes displayed a wide variation in their responses to water stress, with some of them exhibiting enhanced root development and reduced foliar biomass. The commercial hybrid had greater aerial growth compared to root growth. The four F1 hybrids among MAGIC parents differed in their performance, with some having significant positive or negative heterosis in several traits. The subset of five MAGIC lines displayed a wide diversity in their response to water stress. CONCLUSION: The results show that a large diversity for tolerance to drought is available among the eggplant MAGIC materials, which can contribute to developing drought-tolerant eggplant cultivars.


Assuntos
Antioxidantes , Desidratação , Solanum melongena , Solanum melongena/genética , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/fisiologia , Solanum melongena/metabolismo , Antioxidantes/metabolismo , Hibridização Genética , Genótipo , Secas , Vigor Híbrido/genética , Prolina/metabolismo , Biomassa
3.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674468

RESUMO

Eggplant (Solanum melongena L.) breeding for fruit quality has mostly focused on visual traits and nutritional and bioactive compounds, including chlorogenic acid. However, higher contents of chlorogenic acid may lead to more pronounced fruit flesh browning. We examined a diverse collection of 59 eggplant accessions across five varietal types ('black oval', 'striped', 'anthocyanin-free', 'purple', and 'black elongated') to evaluate the degree of browning, polyphenol oxidase (PPO) activity, and chlorogenic acid (CGA) content. The results reveal moderate correlations among these traits, with no clear differences among the varietal types, suggesting that other factors, including genetic variation, might significantly influence these traits. Notably, 'black oval' accessions demonstrated higher browning and PPO activity, whereas 'striped' accessions showed low variability. The identification of genotypes with lower browning and higher CGA content highlights opportunities for targeted genotype selection to improve eggplant chlorogenic acid content while maintaining low or moderate browning, pointing towards the importance of genetic considerations in breeding strategies to reduce browning and enhance nutritional value.

4.
Plant Physiol Biochem ; 208: 108447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417307

RESUMO

Identification of novel genotypes with enhanced nitrogen use efficiency (NUE) is a key challenge for a sustainable tomato production. In this respect, the performance of a panel of thirty tomato accessions were evaluated under high (HN; 5 mM N) and low (LN; 0.5 mM N) nitrogen irrigation solutions. For each treatment, when 50% of plants reached the first flower bud stage, plant growth and biomass traits, chlorophyll, flavonol and anthocyanin indexes, nitrogen balance index (NBI), C:N ratio in leaves, stems, and roots, and NUE were evaluated. Significant (p < 0.05) effects were observed for accession, N treatment, and their interaction across all the traits. Under LN, plants showed a delayed development (40 days for HN vs. 65 days for LN) and reduced growth and biomass. On average, LN condition led to 41.8% decrease in nitrogen uptake efficiency (NUpE) but also 189.0% increase in NUtE, resulting in 62.2% overall increase in NUE. A broad range of variation among accessions was observed under both HN and LN conditions. Under LN conditions, chlorophyll index and NBI decreased, while flavonol and anthocyanin indexes increased. Leaf C:N ratio was positively correlated with nitrogen utilisation efficiency (NUtE) in both N treatments. Multi-trait analyses identified top-performing accessions under each condition, allowing to identify one accession among top performers under both conditions. Correlation analysis revealed that high root biomass and leaf C:N ratio are useful markers for selecting high NUE accessions. These findings offer valuable insights for improving tomato NUE under varying nitrogen fertilization conditions and for breeding high-NUE cultivars.


Assuntos
Nitrogênio , Solanum lycopersicum , Solanum lycopersicum/genética , Antocianinas , Melhoramento Vegetal , Genótipo , Clorofila , Flavonóis , Fertilização
5.
Hortic Res ; 10(8): uhad141, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575654

RESUMO

The development of new cultivars with improved nitrogen use efficiency (NUE) is key for implementing sustainable agriculture practices. Crop wild relatives (CWRs) provide valuable genetic resources for breeding programs aimed at achieving this goal. In this study, three eggplant (Solanum melongena) accessions together with their advanced backcrosses (ABs; BC3 to BC5 generations) were evaluated for 22 morpho-agronomic, physiological, and NUE traits under low nitrogen (LN) fertilization conditions. The ABs were developed with introgressions from the wild relatives Solanum insanum, Solanum dasyphyllum, and Solanum elaeagnifolium. The AB population comprised a total of 25, 59, and 59 genotypes, respectively, with overall donor wild relative genome coverage percentages of 58.8%, 46.3%, and 99.2%. The three S. melongena recurrent parents were also evaluated under control (normal) N fertilization. Reduction of N fertilization in the parents resulted in decreased chlorophyll content-related traits, aerial biomass, stem diameter, and yield and increased NUE, nitrogen uptake efficiency (NUpE), and nitrogen utilization efficiency (NUtE). However, the decrease in yield was moderate, ranging between 62.6% and 72.6%. A high phenotypic variation was observed within each of the three sets of ABs under LN conditions, with some individuals displaying improved transgressive characteristics over the recurrent parents. Using the single primer enrichment technology 5 k probes platform for high-throughput genotyping, we observed a variable but high degree of recurrent parent genome recovery in the ABs attributable to the lines recombination, allowing the successful identification of 16 quantitative trait loci (QTL). Different allelic effects were observed for the introgressed QTL alleles. Several candidate genes were identified in the QTL regions associated with plant growth, yield, fruit size, and NUE-related parameters. Our results show that eggplant materials with introgressions from CWRs can result in a dramatic impact in eggplant breeding for a more sustainable agriculture.

6.
J Exp Bot ; 74(20): 6285-6305, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37419672

RESUMO

Eggplant (Solanum melongena) is a major vegetable crop with great potential for genetic improvement owing to its large and mostly untapped genetic diversity. It is closely related to over 500 species of Solanum subgenus Leptostemonum that belong to its primary, secondary, and tertiary genepools and exhibit a wide range of characteristics useful for eggplant breeding, including traits adaptive to climate change. Germplasm banks worldwide hold more than 19 000 accessions of eggplant and related species, most of which have yet to be evaluated. Nonetheless, eggplant breeding using the cultivated S. melongena genepool has yielded significantly improved varieties. To overcome current breeding challenges and for adaptation to climate change, a qualitative leap forward in eggplant breeding is necessary. The initial findings from introgression breeding in eggplant indicate that unleashing the diversity present in its relatives can greatly contribute to eggplant breeding. The recent creation of new genetic resources such as mutant libraries, core collections, recombinant inbred lines, and sets of introgression lines will be another crucial element and will require the support of new genomics tools and biotechnological developments. The systematic utilization of eggplant genetic resources supported by international initiatives will be critical for a much-needed eggplant breeding revolution to address the challenges posed by climate change.


Assuntos
Solanum melongena , Solanum , Solanum melongena/genética , Melhoramento Vegetal , Solanum/genética , Fenótipo
7.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047209

RESUMO

The pear is an important fruit tree in temperate areas, but due to its sensitivity, fruit yield and quality are often affected by disease and pest attacks. Pear genotypes from a germplasm collection comprising 13 Pyrus species, 17 Romanian varieties, and 50 non-Romanian varieties from a worldwide assortment were investigated in this study. Throughout four years, response to attack of the principal pathogens and pests was investigated phenotypically under natural conditions of infection and infestation. SSR markers were used to analyze the genetic diversity of the genotypes. A standardized method for the evaluation of responses to biotic stressors was proposed, which highlighted significant differences between genotypes. The species and varieties with the lowest degrees of attack (DA%), calculated based on the frequency and intensity of attack, were identified for pear scab (Venturia pyrina), septoria (Septoria pyricola), fire blight (Erwinia amylovora), and psyllids (Psylla sp.). These accessions could provide valuable sources of genes of interest to develop resistant varieties in new pear breeding programs. By combining phenotypic and molecular analyses, significant information was obtained that can be exploited to generate high variability for selection through artificial hybridization by harnessing accessions with complementary molecular fingerprints and high genetic distances.


Assuntos
Erwinia amylovora , Pyrus , Pyrus/genética , Melhoramento Vegetal , Genótipo , Frutas , Doenças das Plantas/genética
8.
Front Plant Sci ; 14: 1135237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025131

RESUMO

Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences. A broad array of genetic and genomic tools has helped to identify QTLs and candidate genes associated with the fruit biosynthesis of phenolic acids and flavonoids. The aim of this review was to synthesize the available information making it easily available for researchers and breeders. The phenylpropanoid pathway is tightly regulated by structural genes, which are conserved across species, along with a complex network of regulatory elements like transcription factors, especially of MYB family, and cellular transporters. Moreover, phenolic compounds accumulate in tissue-specific and developmental-dependent ways, as different paths of the metabolic pathway are activated/deactivated along with fruit development. We retrieved 104 annotated putative orthologues encoding for key enzymes of the phenylpropanoid pathway in tomato (37), eggplant (29) and pepper (38) and compiled 267 QTLs (217 for tomato, 16 for eggplant and 34 for pepper) linked to fruit phenolic acids, flavonoids and total phenolics content. Combining molecular tools and genetic variability, through both conventional and genetic engineering strategies, is a feasible approach to improve phenolics content in tomato, eggplant and pepper. Finally, although the phenylpropanoid biosynthetic pathway has been well-studied in the Solanaceae, more research is needed on the identification of the candidate genes behind many QTLs, as well as their interactions with other QTLs and genes.

9.
Plants (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616323

RESUMO

In a climate change scenario, crop tolerance to drought must be urgently improved, as it represents an increasingly critical stress reducing agricultural yields worldwide. Although most crops are relatively sensitive to water stress, many of their wild relatives are more tolerant and may be used to improve drought tolerance in our crops. In this study, the response to drought of eggplant (Solanum melongena), its close wild relatives S. insanum and S. incanum and their interspecific hybrids with S. melongena was assessed. The plants were subjected to two treatments for 18 days: control, with irrigation every four days, and drought, with complete interruption of irrigation. Morphological and biomass traits were measured, and physiological and biochemical responses were analysed using stress biomarkers such as proline, flavonoids, and total phenolic compounds. Oxidative stress was quantified by measuring malondialdehyde (MDA) content. As a result of the drought treatment, plant development and tissue water content were seriously affected. Generally, water deficit also caused significant increases in MDA, proline, flavonoids, and total phenolics compounds. Our results comparing parental accessions reveal a better response to drought in one of the S. insanum accessions. The hybrid between S. melongena and S. incanum displayed a better response than the other hybrids and even its parents. The results obtained here might be helpful for future eggplant breeding programmes aimed at improving drought tolerance.

10.
Front Plant Sci ; 13: 1025951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388476

RESUMO

Understanding the mechanisms by which chlorophylls are synthesized in the eggplant (Solanum melongena) fruit peel is of great relevance for eggplant breeding. A multi-parent advanced generation inter-cross (MAGIC) population and a germplasm collection have been screened for green pigmentation in the fruit peel and used to identify candidate genes for this trait. A genome-wide association study (GWAS) performed with 420 MAGIC individuals revealed a major association on chromosome 8 close to a gene similar to APRR2. Two variants in SmAPRR2, predicted as having a high impact effect, were associated with the absence of fruit chlorophyll pigmentation in the MAGIC population, and a large deletion of 5.27 kb was found in two reference genomes of accessions without chlorophyll in the fruit peel. The validation of the candidate gene SmAPRR2 was performed by its sequencing in a set of MAGIC individuals and through its de novo assembly in 277 accessions from the G2P-SOL eggplant core collection. Two additional mutations in SmAPRR2 associated with the lack of chlorophyll were identified in the core collection set. The phylogenetic analysis of APRR2 reveals orthology within Solanaceae and suggests that specialization of APRR2-like genes occurred independently in Cucurbitaceae and Solanaceae. A strong geographical differentiation was observed in the frequency of predominant mutations in SmAPRR2, resulting in a lack of fruit chlorophyll pigmentation and suggesting that this phenotype may have arisen and been selected independently several times. This study represents the first identification of a major gene for fruit chlorophyll pigmentation in the eggplant fruit.

11.
Hortic Res ; 9: uhac112, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795386

RESUMO

The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.

12.
J Exp Bot ; 73(11): 3431-3445, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35358313

RESUMO

A comprehensive collection of 1254 tomato accessions, corresponding to European traditional and modern varieties, early domesticated varieties, and wild relatives, was analyzed by genotyping by sequencing. A continuous genetic gradient between the traditional and modern varieties was observed. European traditional tomatoes displayed very low genetic diversity, with only 298 polymorphic loci (95% threshold) out of 64 943 total variants. European traditional tomatoes could be classified into several genetic groups. Two main clusters consisting of Spanish and Italian accessions showed higher genetic diversity than the remaining varieties, suggesting that these regions might be independent secondary centers of diversity with a different history. Other varieties seem to be the result of a more recent complex pattern of migrations and hybridizations among the European regions. Several polymorphic loci were associated in a genome-wide association study with fruit morphological traits in the European traditional collection. The corresponding alleles were found to contribute to the distinctive phenotypic characteristic of the genetic varietal groups. The few highly polymorphic loci associated with morphological traits in an otherwise a low-diversity population suggests a history of balancing selection, in which tomato farmers likely maintained the morphological variation by inadvertently applying a high selective pressure within different varietal types.


Assuntos
Solanum lycopersicum , Alelos , Fazendeiros , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Solanum lycopersicum/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
Plants (Basel) ; 11(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35336643

RESUMO

Marigolds (Tagetes spp.) are multifunctional flowering plants belonging to the Asteraceae family, well-known and widespread for their ornamental value and many other uses. In this study, morphological differences and genetic relationships among 21 cultivars of three species of marigold (Tagetes patula, T. erecta and T. tenuifolia) were analysed. Results have revealed obvious differences among genotypes, starting from the morphological characteristics of the seeds and their capacity to germinate to adult plant morphological characteristics, both between cultivars and species. The genotypic differences were manifested in considerable variation in the development of phenological stages and the main morphological traits of plants and flowers. PCA and hierarchical clustering analyses of morphological traits revealed a homogeneous grouping of cultivars within each species, except for Orion, belonging to T. patula, which was closer to T. erecta cultivars. A subset of 13 cultivars from the three species was subjected to SSR analysis, revealing considerable genetic diversity and good separation between T. patula on the one side and T. erecta and T. tenuifolia on the other. The observed heterozygosity was much lower than the expected heterozygosity, revealing a high degree of fixation. The results reveal that the three species evaluated have considerable morphological and genetic diversity, which has important implications for assessing genetic diversity, conserving germplasm and selecting parents for new breeding works in marigolds.

14.
Front Plant Sci ; 13: 847789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330873

RESUMO

Multi-parent advanced generation inter-cross (MAGIC) populations facilitate the genetic dissection of complex quantitative traits in plants and are valuable breeding materials. We report the development of the first eggplant MAGIC population (S3 Magic EGGplant InCanum, S3MEGGIC; 8-way), constituted by the 420 S3 individuals developed from the intercrossing of seven cultivated eggplant (Solanum melongena) and one wild relative (S. incanum) parents. The S3MEGGIC recombinant population was genotyped with the eggplant 5k probes SPET platform and phenotyped for anthocyanin presence in vegetative plant tissues (PA) and fruit epidermis (FA), and for the light-insensitive anthocyanic pigmentation under the calyx (PUC). The 7,724 filtered high-confidence single-nucleotide polymorphisms (SNPs) confirmed a low residual heterozygosity (6.87%), a lack of genetic structure in the S3MEGGIC population, and no differentiation among subpopulations carrying a cultivated or wild cytoplasm. Inference of haplotype blocks of the nuclear genome revealed an unbalanced representation of the founder genomes, suggesting a cryptic selection in favour or against specific parental genomes. Genome-wide association study (GWAS) analysis for PA, FA, and PUC detected strong associations with two myeloblastosis (MYB) genes similar to MYB113 involved in the anthocyanin biosynthesis pathway, and with a COP1 gene which encodes for a photo-regulatory protein and may be responsible for the PUC trait. Evidence was found of a duplication of an ancestral MYB113 gene with a translocation from chromosome 10 to chromosome 1 compared with the tomato genome. Parental genotypes for the three genes were in agreement with the identification of the candidate genes performed in the S3MEGGIC population. Our new eggplant MAGIC population is the largest recombinant population in eggplant and is a powerful tool for eggplant genetics and breeding studies.

15.
Plants (Basel) ; 10(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34834843

RESUMO

Tomato (Solanum lycopersicum) is the globally most consumed vegetable. The objective of this research was to analyze physico-chemical, nutritional and sensorial components (taste and flavor) in two new commercial hybrids (AS 300 F1 and AS 400 F1) and their four F7 parental lines. Two widely grown F1 hybrids (Precos F1 and Addalyn F1) were used as controls. The results obtained for carbohydrates (HPLC-RID) indicated that the highest values (27.82 mg/g) were recorded in the paternal line AS 10 of the new hybrid AS 400 F1. The highest values of total organic acids (HPLC-VWD) were recorded in Addalyn F1 (5.06 m/g), while the highest value of phenolic compounds (HPLC-DAD-ESI⁺) were identified in the maternal line AS 09 of the hybrid AS 400 F1 (96.3 µg/g). Intrinsic sensory values were analyzed by male and female tasters of different ages using a hedonic scale. The tasters' perception revealed obvious taste differences between tomato genotypes. The study allowed determining genetic parameters of interest (heterosis and heterobeltosis) for the new hybrids, as well as a detailed characterization of the chemical composition and organoleptic quality of the parental breeding lines and their hybrids, which is useful in tomato breeding.

17.
Food Res Int ; 147: 110531, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399509

RESUMO

The study of the diversity within and between major Solanaceae crops (pepper, tomato, eggplant) is of interest for the selection and development of balanced diets. We have measured thirty-six major fruit composition traits, encompassing sugars, organic acids, antioxidants and minerals, in a set of 10 accessions per crop for pepper, tomato and eggplant, grown under the same cultivation conditions. The aim was to evaluate the diversity within species and to provide an accurate comparison of fruit composition among species by reducing to a minimum the environmental effect. Pepper, tomato and eggplant had a clearly distinct composition profile. Pepper showed the highest average content in total sugars and organic acids. Fructose and glucose were the major sugar compounds in the three species, although in pepper and tomato sucrose was present only in trace amounts. Citric acid was the major organic acid in pepper and tomato, while in eggplant it was malic acid. Pepper and eggplant had the highest total antioxidant activity. Vitamin C content was much higher in pepper than in tomato and eggplant, while eggplant accumulated high concentrations of chlorogenic acid. Furthermore, eggplant was the species with higher content in most minerals, particularly for K, Mg and Cu, while pepper was the richest in Fe. Due to their complementary nutritional profiles, a combined regular consumption of the three vegetables would supply more than 20% of the Dietary Reference Intake of several of the analysed phytochemicals. The large diversity within each species is of interest for selecting varieties with better nutritional and organoleptic profiles, as well as for breeding new cultivars.


Assuntos
Solanum lycopersicum , Solanum melongena , Frutas , Melhoramento Vegetal , Verduras
18.
Foods ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209659

RESUMO

Antiviral treatments inhibiting Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication may represent a strategy complementary to vaccination to fight the ongoing Coronavirus disease 19 (COVID-19) pandemic. Molecules or extracts inhibiting the SARS-CoV-2 chymotripsin-like protease (3CLPro) could contribute to reducing or suppressing SARS-CoV-2 replication. Using a targeted approach, we identified 17 plant products that are included in current and traditional cuisines as promising inhibitors of SARS-CoV-2 3CLPro activity. Methanolic extracts were evaluated in vitro for inhibition of SARS-CoV-2 3CLPro activity using a quenched fluorescence resonance energy transfer (FRET) assay. Extracts from turmeric (Curcuma longa) rhizomes, mustard (Brassica nigra) seeds, and wall rocket (Diplotaxis erucoides subsp. erucoides) at 500 µg mL-1 displayed significant inhibition of the 3CLPro activity, resulting in residual protease activities of 0.0%, 9.4%, and 14.9%, respectively. Using different extract concentrations, an IC50 value of 15.74 µg mL-1 was calculated for turmeric extract. Commercial curcumin inhibited the 3CLPro activity, but did not fully account for the inhibitory effect of turmeric rhizomes extracts, suggesting that other components of the turmeric extract must also play a main role in inhibiting the 3CLPro activity. Sinigrin, a major glucosinolate present in mustard seeds and wall rocket, did not have relevant 3CLPro inhibitory activity; however, its hydrolysis product allyl isothiocyanate had an IC50 value of 41.43 µg mL-1. The current study identifies plant extracts and molecules that can be of interest in the search for treatments against COVID-19, acting as a basis for future chemical, in vivo, and clinical trials.

19.
Front Plant Sci ; 12: 633957, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897723

RESUMO

The 'de penjar' tomato (Solanum lycopersicum L.) is a group of local varieties from the Spanish Mediterranean region carrying the alc mutation, which provides long shelf-life. Their evolution under low-input management practices has led to the selection of resilient genotypes to adverse conditions. Here we present the first evaluation on nutritional fruit composition of a collection of 44 varieties of 'de penjar' tomato under two N fertilization levels, provided by doses of manure equivalent to 162 kg N ha-1 in the high N treatment and 49 kg N ha-1 in the low N treatment. Twenty-seven fruit composition and quality traits, as well as plant yield and SPAD value, were evaluated. A large variation was observed, with lycopene being the composition trait with the highest relative range of variation (over 4-fold) under both N treatments, and significant differences among varieties were detected for all traits. While yield and most quality traits were not affected by the reduction in N fertilization, fruits from the low N treatment had, on average, higher values for hue (5.9%) and lower for fructose (-11.5%), glucose (-15.8%), and total sweetness index (-12.9%). In addition, lycopene and ß-carotene presented a strongly significant genotype × N input interaction. Local varieties had higher values than commercial varieties for traits related to the ratio of sweetness to acidity and for vitamin C, which reinforces the appreciation for their organoleptic and nutritional quality. Highest-yielding varieties under both conditions displayed wide variation in the composition and quality profiles, which may allow the selection of specific ideotypes with high quality under low N conditions. These results revealed the potential of 'de penjar' varieties as a genetic resource in breeding for low N inputs and improving the organoleptic and nutritional tomato fruit quality.

20.
J Sci Food Agric ; 101(11): 4724-4734, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33491780

RESUMO

BACKGROUND: Crops are exposed to recurrent and acute drought stress episodes during their vegetative and reproductive cycles, and these episodes are increasingly frequent due to ongoing climate change. Sweet pepper (Capsicum annuum), alias bell pepper, is one of the most widely cultivated vegetables and is grown in open fields worldwide. Here we assessed the effect of acute water stress, applied to a breeding line of sweet pepper at three stages of plant development: five true-leaves (Stage 1), production of the third flower (Stage 2) and setting of the first fruit (Stage 3), on the production and biochemical composition of its ripe fruits. RESULTS: The water stress at Stages 1 and 2 induced a delay in fruit ripening, while at Stage 3 caused a drop in production. The biochemical composition of ripe fruits was assessed by quantifying their content in vitamin C, sugars, organic acids, flavonoids as well as 190 volatile organic compounds, mainly belonging to the chemical classes of hydrocarbons, alcohols, ketones, esters, terpenes, aldehydes and ethers. Our results highlight that, at different stages of plant development, acute water stresses modulate differently the accumulation of bioactive compounds in fruits, which play a key role in setting the redox-status and osmotic adjustment of the plant. This was also the case for volatile compounds since, within each chemical class, different compounds varied their content in ripe fruits. CONCLUSIONS: On the whole, our results demonstrate that water stresses potentially affect the organoleptic and sensory qualities of bell pepper fruits depending on when they occur. © 2021 Society of Chemical Industry.


Assuntos
Capsicum/metabolismo , Frutas/química , Água/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Capsicum/química , Capsicum/crescimento & desenvolvimento , Carotenoides/análise , Carotenoides/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Melhoramento Vegetal , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...