Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829838

RESUMO

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Transporte de Cátions Orgânicos , Humanos , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores/química , Simportadores/metabolismo , Sítios de Ligação , Ligação Proteica , Ergotioneína/química , Ergotioneína/metabolismo , Sódio/metabolismo , Sódio/química , Simulação por Computador , Acetilcolina/metabolismo , Acetilcolina/química , Ligantes
2.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672410

RESUMO

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Assuntos
Inflamação , Proteínas de Transporte de Cátions Orgânicos , Membro 5 da Família 22 de Carreadores de Soluto , Simportadores , Humanos , Inflamação/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Animais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Ergotioneína/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/genética , Doença de Crohn/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Microbioma Gastrointestinal , Carnitina/metabolismo , Asma/metabolismo , Asma/genética , Acetilcolina/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1866(2): 184263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092232

RESUMO

BACKGROUND: OCTN1 belongs to the SLC22 family, which includes transporters for cationic, zwitterionic, and anionic substrates. OCTN1 function and role in cells are still poorly understood. Not only cations, such as TEA, but also zwitterions, such as carnitine and ergothioneine, figure among transported molecules. METHODS: In this work, we carried out transport assays measuring [14C]-TEA and [3H]-Carnitine in proteoliposomes reconstituted with the recombinant human OCTN1 in the presence of Na+ or other cations. The homology model of OCTN1 was built using the structure of OCT3 as a template for docking analysis. RESULTS: TEA and carnitine did not inhibit each other. Moreover, carnitine uptake was not affected by the presence of Na+ and TEBA, whereas TEA was strongly inhibited by both compounds. Computational data revealed that TEA, Na+, and carnitine can interact with E381 in the OCTN1 substrate site. Differently from TEA, in the presence of Na+, carnitine is still able to interact with the binding site via R469. CONCLUSIONS: The lack of mutual inhibition of the two prototype substrates, the different effect of Na+ and TEBA on their transport reaction, together with the computational analysis supports the existence of two transport pathways for cations and zwitterions. GENERAL SIGNIFICANCE: The results shed new light on the transport mechanisms of OCTN1, helping to get further insights into the structure/function relationships. The described results correlate well with previous and very recent findings on the polyspecificity of the OCT group of transporters belonging to the same family.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Simportadores , Humanos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Carnitina , Cátions/metabolismo
4.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203703

RESUMO

The human SLC7A10 transporter, also known as ASC-1, catalyzes the transport of some neutral amino acids. It is expressed in astrocytes, neurons, and adipose tissues, playing roles in learning, memory processes, and lipid metabolism, thus being involved in neurological and metabolic pathologies. Structure/function studies on this transporter are still in their infancy. In this study, we present a methodology for producing the recombinant human transporter in E. coli. Its transport function was assayed in proteoliposomes following the uptake of radiolabeled L-serine. After the testing of several growth conditions, the hASC-1 transporter was successfully expressed in BL21(DE3) codon plus RIL in the presence of 0.5% glucose and induced with 0.05 mM IPTG. After solubilization with C12E8 and cholesteryl hemisuccinate and purification by Ni-chelating chromatography, hASC-1 was reconstituted in proteoliposomes. In this experimental system it was able to catalyze an Na+-independent homologous antiport of L-serine. A Km for L-serine transport of 0.24 mM was measured. The experimental model developed in this work represents a reproducible system for the transport assay of hASC-1 in the absence of interferences. This tool will be useful to unveil unknown transport properties of hASC-1 and for testing ligands with possible application in human pharmacology.


Assuntos
Escherichia coli , Proteolipídeos , Serina , Humanos , Escherichia coli/genética , Transporte Biológico , Transporte de Íons
5.
Life (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36013385

RESUMO

For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SLC superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets. Despite their critical role in human health, a large part of SLCs' is 'orphans' for substrate specificity or function. Moreover, very few data are available concerning their 3D structure. On the basis of the human health benefits of filling these knowledge gaps, an understanding of protein expression in systems that allow functional production of these proteins is essential. Among the 500 known yeast species, S. cerevisiae and P. pastoris represent those most employed for this purpose. This review aims to provide a comprehensive state-of-the-art on the attempts of human SLC expression performed by exploiting yeast. The collected data will hopefully be useful for guiding new attempts in SLCs expression with the aim to reveal new fundamental data that could lead to potential effects on human health.

6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409183

RESUMO

Ten percent of human genes encode for membrane transport systems, which are key components in maintaining cell homeostasis. They are involved in the transport of nutrients, catabolites, vitamins, and ions, allowing the absorption and distribution of these compounds to the various body regions. In addition, roughly 60% of FDA-approved drugs interact with membrane proteins, among which are transporters, often responsible for pharmacokinetics and side effects. Defects of membrane transport systems can cause diseases; however, knowledge of the structure/function relationships of transporters is still limited. Among the expression of hosts that produce human membrane transport systems, E. coli is one of the most favorable for its low cultivation costs, fast growth, handiness, and extensive knowledge of its genetics and molecular mechanisms. However, the expression in E. coli of human membrane proteins is often toxic due to the hydrophobicity of these proteins and the diversity in structure with respect to their bacterial counterparts. Moreover, differences in codon usage between humans and bacteria hamper translation. This review summarizes the many strategies exploited to achieve the expression of human transport systems in bacteria, providing a guide to help people who want to deal with this topic.


Assuntos
Escherichia coli , Proteínas de Membrana Transportadoras , Bactérias/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163050

RESUMO

The plasma membrane transporter ASCT2 is a well-known Na+-dependent obligatory antiporter of neutral amino acids. The crucial role of the residue C467 in the recognition and binding of the ASCT2 substrate glutamine, has been highlighted by structure/function relationship studies. The reconstitution in proteoliposomes of the human ASCT2 produced in P. pastoris is here employed to unveil another role of the C467 residue in the transport reaction. Indeed, the site-directed mutant C467A displayed a novel property of the transporter, i.e., the ability of mediating a low but measurable unidirectional transport of [3H]-glutamine. This reaction conforms to the main features of the ASCT2-mediated transport, namely the Na+-dependence, the pH dependence, the stimulation by cholesterol included in the proteoliposome membrane, and the specific inhibition by other common substrates of the reconstituted human ASCT2. Interestingly, the WT protein cannot catalyze the unidirectional transport of [3H]-glutamine, demonstrating an unspecific phenomenon. This difference is in favor of a structural conformational change between a WT and C467A mutant that triggers the appearance of the unidirectional flux; this feature has been investigated by comparing the available 3D structures in two different conformations, and two homology models built on the basis of hEAAT1 and GLTPh.


Assuntos
Substituição de Aminoácidos , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sítios de Ligação , Clonagem Molecular , Glutamina/metabolismo , Humanos , Transporte de Íons , Antígenos de Histocompatibilidade Menor/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
8.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055100

RESUMO

The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Interações Medicamentosas , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Acetilação , Animais , Sítios de Ligação , Transporte Biológico , Ergotioneína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Modelos Moleculares , Conformação Molecular , Especificidade de Órgãos , Proteínas de Transporte de Cátions Orgânicos/química , Ligação Proteica , Relação Estrutura-Atividade , Simportadores/química
9.
FEBS Lett ; 595(24): 3030-3041, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741534

RESUMO

Alanine, serine, cysteine transporter 2 (ASCT2) is a membrane amino acid transporter with relevance to human physiology and pathology, such as cancer. Notwithstanding, the study on the ASCT2 transport cycle still has unknown aspects, such as the role of Na+ in this process. We investigate this issue using recombinant hASCT2 reconstituted in proteoliposomes. Changes in the composition of purification buffers show the crucial role of Na+ in ASCT2 functionality. The transport activity is abolished when Na+ is absent or substituted by Li+ or K+ in purification buffers. By employing a Na+ fluorometric probe, we measured an inwardly directed flux of Na+ and, by combining fluorometric and radiometric assays, determined a 2Na+ : 1Gln stoichiometry. Kinetics of Na+ transport suggest that pH-sensitive residues are involved in Na+ binding/transport. Our results clarify the role of Na+ on human ASCT2 transporter activity.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sódio/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Transporte Proteico/efeitos dos fármacos , Proteolipídeos/metabolismo , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência
10.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770970

RESUMO

The localization of membrane transporters at the forefront of natural barriers makes these proteins very interesting due to their involvement in the absorption and distribution of nutrients and xenobiotics, including drugs. Over the years, structure/function relationship studies have been performed employing several strategies, including chemical modification of exposed amino acid residues. These approaches are very meaningful when applied to membrane transporters, given that these proteins are characterized by both hydrophobic and hydrophilic domains with a different degree of accessibility to employed chemicals. Besides basic features, the chemical targeting approaches can disclose information useful for pharmacological applications as well. An eminent example of this picture is the histidine/large amino acid transporter SLC7A5, known as LAT1 (Large Amino Acid Transporter 1). This protein is crucial in cell life because it is responsible for mediating the absorption and distribution of essential amino acids in peculiar body districts, such as the blood brain barrier and placenta. Furthermore, LAT1 can recognize a large variety of molecules of pharmacological interest and is also considered a hot target for drugs due to its over-expression in virtually all human cancers. Therefore, it is not surprising that the chemical targeting approach, coupled with bioinformatics, site-directed mutagenesis and transport assays, proved fundamental in describing features of LAT1 such as the substrate binding site, regulatory domains and interactions with drugs that will be discussed in this review. The results on LAT1 can be considered to have general applicability to other transporters linked with human diseases.


Assuntos
Histidina/antagonistas & inibidores , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Preparações Farmacêuticas/química , Biomarcadores/análise , Biomarcadores/metabolismo , Biologia Computacional , Histidina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética
11.
SLAS Discov ; 26(9): 1148-1163, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269129

RESUMO

The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Sistema ASC de Transporte de Aminoácidos/química , Suscetibilidade a Doenças , Humanos , Antígenos de Histocompatibilidade Menor/química , Família Multigênica , Relação Estrutura-Atividade
12.
Front Cell Dev Biol ; 8: 583850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072764

RESUMO

Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a "shuttle-molecule" to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the ß-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.

13.
Cells ; 9(9)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899180

RESUMO

Cancer cells perform a metabolic rewiring to sustain an increased growth rate and compensate for the redox stress caused by augmented energy metabolism. The metabolic changes are not the same in all cancers. Some features, however, are considered hallmarks of this disease. As an example, all cancer cells rewire the amino acid metabolism for fulfilling both the energy demand and the changed signaling routes. In these altered conditions, some amino acids are more frequently used than others. In any case, the prerequisite for amino acid utilization is the presence of specific transporters in the cell membrane that can guarantee the absorption and the traffic of amino acids among tissues. Tumor cells preferentially use some of these transporters for satisfying their needs. The evidence for this phenomenon is the over-expression of selected transporters, associated with specific cancer types. The knowledge of the link between the over-expression and the metabolic rewiring is crucial for understanding the molecular mechanism of reprogramming in cancer cells. The continuous growth of information on structure-function relationships and the regulation of transporters will open novel perspectives in the fight against human cancers.


Assuntos
Aminoácidos/metabolismo , Metabolismo Energético/genética , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/genética , Linhagem Celular Tumoral , Humanos
14.
Front Cell Dev Biol ; 8: 603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733894

RESUMO

ASCT2 is a neutral amino acid transporter, which catalyzes a sodium-dependent obligatory antiport among glutamine and other neutral amino acids. The human ASCT2 over-expressed in Pichia pastoris and reconstituted in proteoliposomes has been employed for identifying alternative substrates of the transporter. The experimental data highlighted that hASCT2 also catalyzes a sodium-dependent antiport of glutamate with glutamine. This unconventional antiport shows a preferred sidedness: glutamate is inwardly transported in exchange for glutamine transported in the counter direction. The orientation of the transport protein in proteoliposomes is the same as in the cell membrane; then, the observed sidedness corresponds to the transport of glutamate from the extracellular to the intracellular compartment. The competitive inhibition exerted by glutamate on the glutamine transport together with the docking analysis indicates that the glutamate binding site is the same as that of glutamine. The affinity for glutamate is lower than that for neutral amino acids, while the transport rate is comparable to that measured for the asparagine/glutamine antiport. Differently from the neutral amino acid antiport that is insensitive to pH, the glutamate/glutamine antiport is pH-dependent with optimal activity at acidic pH on the external (extracellular) side. The stimulation of glutamate transport by a pH gradient suggests the occurrence of a proton flux coupled to the glutamate transport. The proton transport has been detected by a spectrofluorometric method. The rate of proton transport correlates well with the rate of glutamate transport indicating a 1:1 stoichiometry H+: glutamate. The glutamate/glutamine antiport is also active in intact HeLa cells. On a physiological point of view, the described antiport could have relevance in some districts in which a glutamate/glutamine cycling is necessary, such as in placenta.

15.
Asian J Pharm Sci ; 15(2): 207-219, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32373200

RESUMO

Among the different targets of administered drugs, there are membrane transporters that play also a role in drug delivery and disposition. Moreover, drug-transporter interactions are responsible for off-target effects of drugs underlying their toxicity. The improvement of the drug design process is subjected to the identification of those membrane transporters mostly relevant for drug absorption, delivery and side effect production. A peculiar group of proteins with great relevance to pharmacology is constituted by the membrane transporters responsible for managing glutamine traffic in different body districts. The interest around glutamine metabolism lies in its physio-pathological role; glutamine is considered a conditionally essential amino acid because highly proliferative cells have an increased request of glutamine that cannot be satisfied only by endogenous synthesis. Then, glutamine transporters provide cells with this special nutrient. Among the glutamine transporters, SLC1A5, SLC6A14, SLC6A19, SLC7A5, SLC7A8 and some members of SLC38 family are the best characterized, so far, in both physiological and pathological conditions. Few 3D structures have been solved by CryoEM; other structural data on these transporters have been obtained by computational analysis. Interactions with drugs have been described for several transporters of this group. For some of them, the studies are at an advanced stage, for others, the studies are still in nuce and novel biochemical findings open intriguing perspectives.

16.
ACS Omega ; 5(5): 2069-2080, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32064367

RESUMO

Chemical modification of proteins is a vintage strategy that is still fashionable due to the information that can be obtained from this approach. An interesting application of chemical modification is linked with membrane transporters. These proteins have peculiar features such as the presence of hydrophobic and hydrophilic domains, which show different degree of accessibility to chemicals. The presence of reactive residues in the membrane transporters is at the basis of the chemical targeting strategy devoted to investigating structure/function relationships; in particular, information on the substrate binding site, regulatory domains, dimerization domains, and the interface between hydrophilic loops and transmembrane domains has been obtained over the years by chemical targeting. Given the difficulty in handling membrane transporters, their study experienced a great delay, particularly concerning structural information. Chemical targeting has been applied with reasonable success to some membrane transporters belonging to the families SLC1, SLC6, SLC7, and SLC22. Furthermore, some data on the potential application of chemical targeting in pharmacology are also discussed.

17.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041338

RESUMO

The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MßCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MßCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake. Kinetic analysis of transport demonstrated that the stimulation of transport activity by CHS consisted in an increase of the Vmax of transport with no changes of the Km. Altogether, the data suggests a direct interaction of cholesterol with the protein. A further support to this interpretation was given by a docking analysis indicating the interaction of cholesterol with some protein sites corresponding to CARC-CRAC motifs. The observed direct interaction of cholesterol with OCTN1 points to a possible direct influence of cholesterol on tumor cells or on acetylcholine transport in neuronal and non-neuronal cells via OCTN1.


Assuntos
Acetilcolina/análise , Colesterol/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Tetraetilamônio/análise , Acetilcolina/química , Radioisótopos de Carbono/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Proteolipídeos/análise , Proteolipídeos/química , Tetraetilamônio/química , Trítio/química
18.
Front Mol Biosci ; 6: 110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709262

RESUMO

The human SLC1A5 commonly known as ASCT2 is a sodium-dependent neutral amino acid antiporter involved in transmembrane traffic of glutamine that is exchanged through the cell membrane with smaller amino acids such as serine or threonine. Due to the strong overexpression in human cancers, ASCT2 is widely studied for its relevance to human health. Of special interest are the aspects related to the regulation of its function. The role of cholesterol as a modulator of the transport activity has been studied using a combined strategy of computational and experimental approaches. The effect of cholesterol on the Na ex + -[3H]glutamineex/glutaminein antiport in proteoliposomes has been evaluated by adding cholesteryl hemisuccinate. A strong stimulation of transport activity was observed in the presence of 75 µg cholesteryl hemisuccinate per mg total lipids. The presence of cholesterol did not influence the proteoliposome volume, in a wide range of tested concentration, excluding that the stimulation could be due to effects on the vesicles. cholesteryl hemisuccinate, indeed, improved the incorporation of the protein into the phospholipid bilayer to some extent and increased about three times the Vmax of transport without affecting the Km for glutamine. Docking of cholesterol into the hASCT2 trimer was performed. Six poses were obtained some of which overlapped the hypothetical cholesterol molecules observed in the available 3D structures. Additional poses were docked close to CARC/CRAC motifs (Cholesterol Recognition/interaction Amino acid Consensus sequence). To test the direct binding of cholesterol to the protein, a strategy based on the specific targeting of tryptophan and cysteine residues located in the neighborhood of cholesterol poses was employed. On the one hand, cholesterol binding was impaired by modification of tryptophan residues by the Koshland's reagent. On the other hand, the presence of cholesterol impaired the interaction of thiol reagents with the protein. Altogether, these results confirmed that cholesterol molecules interacted with the protein in correspondence of the poses predicted by the docking analysis.

19.
Biochim Biophys Acta Biomembr ; 1861(9): 1558-1567, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295473

RESUMO

The lysosomal amino acid transporter SLC38A9 is referred to as transceptor, i.e. a transporter with a receptor function. The protein is responsible for coupling amino acid transport across the lysosomal membrane according to the substrate availability to mTORC1 signal transduction. This process allows cells to sense amino acid level responding to growth stimuli in physiological and pathological conditions triggering mTOR regulation. The main substrates underlying this function are glutamine and arginine. The functional and kinetic characterization of glutamine and arginine transport was performed using human SLC38A9 produced in E. coli, purified by affinity chromatography and reconstituted in liposomes. A cooperative behaviour for the wild type protein was revealed for both the substrates. A novel Na+ binding site, namely T453, was described by combined approaches of bioinformatics, site-directed mutagenesis and transport assay. Stimulation by cholesterol of glutamine and arginine transport was observed. The biological function of SLC38A9 relies on the interaction between its N-terminus and components of the mTOR complex; a deletion mutant of the N-terminus tail was produced and transport of glutamine was assayed revealing that this portion does not play any role in the intrinsic transport function of the human SLC38A9. Different features for glutamine and arginine transport were revealed: human SLC38A9 is competent for glutamine efflux, while that of arginine is negligible. In line with these results, imposed ∆pH stimulated glutamine, not arginine transport. Arginine plays, on the contrary, a modulatory function and is able to stimulate glutamine efflux. Interestingly, reciprocal inhibition experiments also supported by bioinformatics, suggested that glutamine and arginine may bind to different sites in the human SLC38A9 transporter.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/fisiologia , Aminoácidos/metabolismo , Arginina/metabolismo , Sítios de Ligação , Transporte Biológico , Colesterol/metabolismo , Glutamina/metabolismo , Humanos , Transporte de Íons , Cinética , Lisossomos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
20.
SLAS Discov ; 24(9): 867-881, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251685

RESUMO

The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology.


Assuntos
Transporte Biológico/fisiologia , Cisteína/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Carreadoras de Solutos/metabolismo , Animais , Desenho de Fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...