Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Methods ; 229: 94-107, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38834165

RESUMO

In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNAarg. Characterization of nucleoside and nucleotide compounds involved MS spectrometry, 1H, 13C and 31P NMR analysis. This strategy allows to obtain the pair of the two stable regioisomers of arg-tRNA analogs (2' and 3') which are instrumental to explore the regiospecificity of arginyl transferases enzyme. In our study, a first binding assay of the arg-tRNA micro helix with the Arginyl-tRNA-protein transferase 1 (ATE1) was performed by gel shift assays.

3.
Methods Mol Biol ; 2323: 67-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086274

RESUMO

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition. As a proof of concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Assuntos
Cromatografia de Afinidade/métodos , Clonagem Molecular/métodos , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Proteínas de Ligação a RNA/isolamento & purificação , RNA/isolamento & purificação , Ampicilina/farmacologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Capsídeo , Cloranfenicol/farmacologia , Simulação por Computador , Resistência Microbiana a Medicamentos/genética , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Levivirus/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas , Plasmídeos/genética , RNA/biossíntese , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Proteínas de Ligação a RNA/biossíntese
4.
Biochem J ; 478(8): 1525-1545, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33787846

RESUMO

The Nef protein of human and simian immunodeficiency viruses boosts viral pathogenicity through its interactions with host cell proteins. By combining the polyvalency of its large unstructured regions with the binding selectivity and strength of its folded core domain, Nef can associate with many different host cell proteins, thereby disrupting their functions. For example, the combination of a linear proline-rich motif and hydrophobic core domain surface allows Nef to bind tightly and specifically to SH3 domains of Src family kinases. We investigated whether the interplay between Nef's flexible regions and its core domain could allosterically influence ligand selection. We found that the flexible regions can associate with the core domain in different ways, producing distinct conformational states that alter the way in which Nef selects for SH3 domains and exposes some of its binding motifs. The ensuing crosstalk between ligands might promote functionally coherent Nef-bound protein ensembles by synergizing certain subsets of ligands while excluding others. We also combined proteomic and bioinformatics analyses to identify human proteins that select SH3 domains in the same way as Nef. We found that only 3% of clones from a whole-human fetal library displayed Nef-like SH3 selectivity. However, in most cases, this selectivity appears to be achieved by a canonical linear interaction rather than by a Nef-like 'tertiary' interaction. Our analysis supports the contention that Nef's mode of hijacking SH3 domains is a virus-specific adaptation with no or very few cellular counterparts. Thus, the Nef tertiary binding surface is a promising virus-specific drug target.


Assuntos
HIV-1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Proteínas Nucleares/química , Proteínas Proto-Oncogênicas c-fyn/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Sítio Alostérico , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional/métodos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Feto , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , HIV-1/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Ligantes , Simulação de Dinâmica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
5.
Biochimie ; 164: 95-98, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30940603

RESUMO

Crystallographic studies of RNA/protein complexes are primordial for the understanding of recognition determinants and catalytic mechanisms in the case of enzymes. However, due to the flexibility and propensity to conformational heterogeneity of RNAs, as well as the mostly electrostatic interactions of RNA/protein complexes, they are difficult to crystallize. We present here a method to trap the two interacting partners in a covalent complex, based on a modified reactive RNA allowing the use of the full range of common crystallogenesis tools. We demonstrate the practicability of our approach with the production of a covalent complex of the Thermus thermophilus m1A58 tRNA modification enzyme, and a modified stem loop mimicking the natural substrate of the enzyme.


Assuntos
RNA de Transferência/química , tRNA Metiltransferases/química , Proteínas de Bactérias/química , Cristalografia , Modelos Moleculares , Ligação Proteica , RNA Bacteriano/química , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
6.
Biochimie ; 164: 83-94, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30910425

RESUMO

DEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity. The current model is that they gain specificity and activity through interaction of their intrinsically disordered domains with specific RNA or proteins. DDX3 is a DEAD-box cellular helicase that has been involved in several steps of the HIV viral cycle, including transcription, RNA export to the cytoplasm and translation. In this study, we investigated DDX3 biochemical properties in the context of a biological substrate. DDX3 was overexpressed, purified and its enzymatic activities as well as its RNA binding properties were characterized using both model substrates and a biological substrate, HIV-1 gRNA. Biochemical characterization of DDX3 in the context of a biological substrate identifies HIV-1 gRNA as a rare example of specific substrate and unravels the extent of DDX3 ATPase activity. Analysis of DDX3 binding capacity indicates an unexpected dissociation between its binding capacity and its biochemical activity. We further demonstrate that interaction of DDX3 with HIV-1 gRNA relies both on specific RNA determinants and on the disordered N- and C-terminal regions of the protein. These findings shed a new light regarding the potentiality of DDX3 biochemical activity supporting its multiple cellular functions.


Assuntos
RNA Helicases DEAD-box , Infecções por HIV/virologia , HIV-1/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/fisiologia , Humanos , Cinética , Ligação Proteica , Especificidade por Substrato
7.
RNA Biol ; 16(6): 798-808, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879411

RESUMO

RNA methyltransferases (MTases) catalyse the transfer of a methyl group to their RNA substrates using most-often S-adenosyl-L-methionine (SAM) as cofactor. Only few RNA-bound MTases structures are currently available due to the difficulties in crystallising RNA:protein complexes. The lack of complex structures results in poorly understood RNA recognition patterns and methylation reaction mechanisms. On the contrary, many cofactor-bound MTase structures are available, resulting in well-understood protein:cofactor recognition, that can guide the design of bisubstrate analogues that mimic the state at which both the substrate and the cofactor is bound. Such bisubstrate analogues were recently synthesized for proteins monomethylating the N6-atom of adenine (m6A). These proteins include, amongst others, RlmJ in E. coli and METLL3:METT14 and METTL16 in human. As a proof-of-concept, we here test the ability of the bisubstrate analogues to mimic the substrate:cofactor bound state during catalysis by studying their binding to RlmJ using differential scanning fluorimetry, isothermal titration calorimetry and X-ray crystallography. We find that the methylated adenine base binds in the correct pocket, and thus these analogues could potentially be used broadly to study the RNA recognition and catalytic mechanism of m6A MTases. Two bisubstrate analogues bind RlmJ with micro-molar affinity, and could serve as starting scaffolds for inhibitor design against m6A RNA MTases. The same analogues cause changes in the melting temperature of the m1A RNA MTase, TrmK, indicating non-selective protein:compound complex formation. Thus, optimization of these molecular scaffolds for m6A RNA MTase inhibition should aim to increase selectivity, as well as affinity.


Assuntos
Adenina/análogos & derivados , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/química , Metiltransferases/química , Adenina/metabolismo , Domínio Catalítico , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Temperatura
8.
Biomol NMR Assign ; 12(1): 37-42, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28940147

RESUMO

The HIV-1 viral protein R (Vpr) is incorporated into virus particle during budding suggesting that its presence in the mature virion is required in the early steps of the virus life cycle in newly infected cells. Vpr is released into the host cell cytoplasm to participate to the translocation of the preintegration complex (PIC) into the nucleus for integration of the viral DNA into the host genome. Actually, Vpr plays a key role in the activation of the transcription of the HIV-1 long terminal repeat (LTR), mediates cell cycle arrest in G2 to M transition, facilitates apoptosis and controls the fidelity of reverse transcription. Moreover, Vpr drives the repair enzyme uracil DNA glycosylase (UNG2) towards degradation. UNG2 has a major role in "Base excision repair" (BER) whose main function is to maintain genome integrity by controlling DNA uracilation. The interaction of Vpr with the cellular protein UNG2 is a key event in various stages of retroviral replication and its role remains to be defined. We have performed the structural study of UNG2 by NMR and we report its (1HN, 15N, 13Cα, 13Cß and 13C') chemical shift backbone assignment and its secondary structure in solution as predicted by TALOS-N. We aim to determine with accuracy by NMR, the residues of UNG2 interacting with Vpr, characterize their interaction and use the local structure of UNG2 and its interface with Vpr to propose potential ligands disturbing this interaction.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Uracila-DNA Glicosidase/química , Humanos
9.
Biophys Chem ; 210: 27-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26189113

RESUMO

The enzymes of the TrmI family catalyze the formation of the m(1)A58 modification in tRNA. We previously solved the crystal structure of the Thermus thermophilus enzyme and conducted a biophysical study to characterize the interaction between TrmI and tRNA. TrmI enzymes are active as a tetramer and up to two tRNAs can bind to TrmI simultaneously. In this paper, we present the structures of two TrmI mutants (D170A and Y78A). These residues are conserved in the active site of TrmIs and their mutations result in a dramatic alteration of TrmI activity. Both structures of TrmI mutants revealed the flexibility of the N-terminal domain that is probably important to bind tRNA. The structure of TrmI Y78A catalytic domain is unmodified regarding the binding of the SAM co-factor and the conformation of residues potentially interacting with the substrate adenine. This structure reinforces the previously proposed role of Y78, i.e. stabilize the conformation of the A58 ribose needed to hold the adenosine in the active site. The structure of the D170A mutant shows a flexible active site with one loop occupying in part the place of the co-factor and the second loop moving at the entrance to the active site. This structure and recent data confirms the central role of D170 residue binding the amino moiety of SAM and the exocyclic amino group of adenine. Possible mechanisms for methyl transfer are then discussed.


Assuntos
Enzimas/metabolismo , RNA de Transferência/química , Thermus thermophilus/enzimologia , Catálise , Cristalização , Cristalografia por Raios X , Enzimas/química
10.
Methods Mol Biol ; 1316: v-viii, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26161445
11.
Methods Mol Biol ; 1316: 25-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25967050

RESUMO

For structural, biochemical or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA/protein co-expression in order to express and purify RNA by affinity in native condition. As a proof-of-concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas/genética , Proteínas/isolamento & purificação , RNA/genética , RNA/isolamento & purificação , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas/metabolismo , RNA/química , RNA/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação , RNA de Transferência/metabolismo
12.
RNA ; 20(10): 1607-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25135523

RESUMO

TmRNA is an abundant RNA in bacteria with tRNA and mRNA features. It is specialized in trans-translation, a translation rescuing system. We demonstrate that its partner protein SmpB binds the tRNA-like region (TLD) in vivo and chaperones the fold of the TLD-H2 region. We use an original approach combining the observation of tmRNA degradation pathways in a heterologous system, the analysis of the tmRNA digests by MS and NMR, and co-overproduction assays of tmRNA and SmpB. We study the conformation in solution of tmRNA alone or in complex with one SmpB before ribosome binding using SAXS. Our data show that Mg(2+) drives compaction of the RNA structure and that, in the absence of Mg(2+), SmpB has a similar effect albeit to a lesser extent. Our results show that tmRNA is intrinsically structured in solution with identical topology to that observed on complexes on ribosomes which should facilitate its subsequent recruitment by the 70S ribosome, free or preloaded with one SmpB molecule.


Assuntos
RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
13.
J Virol ; 88(2): 1162-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198424

RESUMO

Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/ultraestrutura , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Escherichia coli/virologia , Microscopia Eletrônica , Dados de Sequência Molecular , Alinhamento de Sequência , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
14.
Nucleic Acids Res ; 41(15): e150, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23804766

RESUMO

RNA has emerged as a major player in many cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. In this work, we have extended this method to RNA/protein co-expression. We have engineered several plasmids that allow overexpression of RNA-protein complexes in E. coli. We have investigated the potential of these tools in many applications, including the production of nuclease-sensitive RNAs encapsulated in viral protein pseudo-particles, the co-production of non-coding RNAs with chaperone proteins, the incorporation of a post-transcriptional RNA modification by co-production with the appropriate modifying enzyme and finally the production and purification of an RNA-His-tagged protein complex by nickel affinity chromatography. We show that this last application easily provides pure material for crystallographic studies. The new tools we report will pave the way to large-scale structural and molecular investigations of RNA function and interactions with proteins.


Assuntos
Escherichia coli/metabolismo , Mapeamento de Interação de Proteínas/métodos , RNA Bacteriano/metabolismo , RNA/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Sequência de Bases , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Escherichia coli/genética , Vetores Genéticos/metabolismo , Levivirus/genética , Levivirus/metabolismo , Metilação , Plasmídeos/genética , Plasmídeos/metabolismo , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Methods Mol Biol ; 941: 9-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23065550

RESUMO

In vivo overproduction of tRNA chimeras yields an RNA insert within a tRNA scaffold. For some applications, it may be necessary to discard the scaffold. Here we present a protocol for selective cleavage of the RNA of interest from the tRNA scaffold, using RNase H and two DNA oligonucleotides. After cleavage, we show that the RNA of interest can be isolated in a one-step purification. This method has, in particular, applications in structural investigations of RNA.


Assuntos
Clivagem do RNA , RNA Ribossômico 16S/metabolismo , RNA de Transferência/metabolismo , Ribonuclease H/metabolismo , Eletroforese em Gel de Poliacrilamida , RNA Ribossômico 16S/isolamento & purificação , Ribonuclease H/biossíntese , Ribonuclease H/isolamento & purificação , Coloração e Rotulagem
16.
Methods Mol Biol ; 941: 1-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23065549

RESUMO

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. In vitro transcription or chemical synthesis are the principal methods to produce RNA. Here, we describe an alternative method allowing RNA production in bacteria and its purification by liquid chromatography. In a few days, between 10 and 100 mg of pure RNA are obtained with this technique.


Assuntos
Engenharia Genética/métodos , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação , Cromatografia Líquida , Escherichia coli/genética , Expressão Gênica , Vírus da Hepatite B/genética , Humanos , RNA de Transferência/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/genética
17.
Methods ; 54(2): 267-73, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21320602

RESUMO

Stable, folded RNA are involved in many key cellular processes and can be used as tools for biological, pharmacological and/or molecular design studies. However, their widespread use has been somewhat limited by their fragile nature and by the difficulties associated with their production on a large scale, which were limited to in vitro methods. This work reviews the novel techniques recently developed that allow efficient expression of recombinant RNA in vivo in Escherichia coli. Based on the extensive data available on the genetic and metabolic mechanisms of this model organism, conditions for optimal production can be derived. Combined with a large repertoire of RNA motifs which can be assembled by recombinant DNA techniques, this opens the way to the modular design of RNA molecules with novel properties.


Assuntos
DNA Recombinante/genética , Escherichia coli/genética , RNA/genética , Transcrição Gênica , Cromatografia Líquida , Clonagem Molecular , Vetores Genéticos , Regiões Promotoras Genéticas , RNA/isolamento & purificação , RNA/metabolismo
18.
Nat Protoc ; 4(6): 947-59, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19478810

RESUMO

RNA production using in vivo transcription by Escherichia coli allows preparation of milligram quantities of RNA for biochemical, biophysical and structural investigations. We describe here a generic protocol for the overproduction and purification of recombinant RNA using liquid chromatography. The strategy utilizes a transfer RNA (tRNA) as a scaffold that can be removed from the RNA of interest by digestion of the fusion RNA at a designed site by RNase H. The tRNA scaffold serves to enhance the stability and to promote the proper expression of its fusion partners. This protocol describes how to construct a tRNA fusion RNA expression vector; to conduct a pilot experiment to assess the yield of the recombinant RNA both before and after processing of the fusion RNA by RNase H; and to purify the target RNA on a large scale for structural or functional studies. This protocol greatly facilitates production of RNA in a time frame of approximately 3 weeks from design to purification. As compared with in vitro methods (transcription, chemical synthesis), this approach is simple, cheap and well suited for large-scale expression and isotope labeling.


Assuntos
Escherichia coli/genética , Técnicas Genéticas , RNA/genética , RNA/isolamento & purificação , Sequência de Bases , Cromatografia Líquida/métodos , Vetores Genéticos , Isótopos , Dados de Sequência Molecular , Plasmídeos/genética , RNA/química , RNA Bacteriano/genética , RNA de Transferência/genética , Ribonuclease H
19.
EMBO Rep ; 10(2): 160-5, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19132006

RESUMO

Tight recognition of codon-anticodon pairings by the ribosome ensures the accuracy and fidelity of protein synthesis. In eubacteria, translational surveillance and ribosome rescue are performed by the 'tmRNA-SmpB' system (transfer messenger RNA-small protein B). Remarkably, entry and accommodation of aminoacylated-tmRNA into stalled ribosomes occur without a codon-anticodon interaction but in the presence of SmpB. Here, we show that within a stalled ribosome, SmpB interacts with the three universally conserved bases G530, A1492 and A1493 that form the 30S subunit decoding centre, in which canonical codon-anticodon pairing occurs. The footprints at positions A1492 and A1493 of a small decoding centre, as well as on a set of conserved SmpB amino acids, were identified by nuclear magnetic resonance. Mutants at these residues display the same growth defects as for DeltasmpB strains. The SmpB protein has functional and structural similarities with initiation factor 1, and is proposed to be a functional mimic of the pairing between a codon and an anticodon.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , RNA Bacteriano/fisiologia , Proteínas de Ligação a RNA/fisiologia , Ribossomos/fisiologia , Alanina/metabolismo , Anticódon/genética , Códon/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Fator de Iniciação 1 em Procariotos/química , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , RNA Bacteriano/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Thermus thermophilus/metabolismo , Thermus thermophilus/ultraestrutura
20.
Nat Methods ; 4(7): 571-6, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558412

RESUMO

RNA has emerged as a major player in most cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. So far, this has been a bottleneck, as the only methods for producing such pure RNA have been in vitro syntheses. Here we describe a generic approach for expressing and purifying structured RNA in Escherichia coli, using tools that parallel those available for recombinant proteins. Our system is based on a camouflage strategy, the 'tRNA scaffold', in which the recombinant RNA is disguised as a natural RNA and thus hijacks the host machinery, escaping cellular RNases. This opens the way to large-scale structural and molecular investigations of RNA function.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , RNA de Transferência/genética , RNA/biossíntese , Escherichia coli/genética , Humanos , Conformação de Ácido Nucleico , RNA/química , RNA/isolamento & purificação , RNA de Transferência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...