Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(14): 3522-3549, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38829222

RESUMO

Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química , Animais , Hidrogéis/química , Modelos Biológicos , Tecido Nervoso/citologia
2.
Biomaterials ; 309: 122575, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38677220

RESUMO

Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.


Assuntos
Platina , Platina/química , Humanos , Animais , Eletrodos Implantados , Estimulação Elétrica , Eletroquímica/métodos , Eletrodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082779

RESUMO

Fibrous tissue encapsulation can impact the performance of bioelectrodes following implantation. For example, significant increases in electrode impedance can occur within four weeks post-implantation. A key limitation hindering the understanding of host response-mediated impedance change is the reliance on animal models or complex in vitro cell cultures for electrode testing. This study aimed to develop an in vitro acellular model that can reproduce the changes in electrical properties of bioelectrodes that occur due to host responses following implantation. Specifically, the effect of synthetic, biological, and bio-synthetic co-polymer hydrogel coatings on electrode impedance was measured. Poly(vinyl alcohol) (PVA), gelatin, and PVA-gelatin co-polymers (10 and 20 wt%) were coated onto platinum (Pt) electrodes. Polarisation and access voltage, key components of the voltage response that relate to cell adhesion and protein adsorption respectively, were measured pre and post hydrogel coating and the impedance change was calculated. Results showed that increasing the polymer concentration affects the access resistance regardless of the hydrogel chemistry but only high content gelatin hydrogels increased the polarisation resistance. The increase in total impedance was ~ 2-fold of bare Pt, similar to clinical observations. This study demonstrated that an acellular fibrosis model using hydrogels could reproduce the impedance changes observed in vivo. Such a model system will support research to better understand in vivo changes in electrical properties and the longer term function of neuroprosthetic electrodes.Clinical Relevance-This study proposes an acellular fibrosis model for preclinical research. This will support the design of improved clinical stimulation strategies and better understanding of the mechanisms of impedance change at the device-tissue interface.


Assuntos
Gelatina , Hidrogéis , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Gelatina/farmacologia , Eletrodos , Polímeros , Fibrose
4.
Adv Sci (Weinh) ; : e2306275, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115740

RESUMO

Integration of bioelectronic devices in clinical practice is expanding rapidly, focusing on conditions ranging from sensory to neurological and mental health disorders. While platinum (Pt) electrodes in neuromodulation devices such as cochlear implants and deep brain stimulators have shown promising results, challenges still affect their long-term performance. Key among these are electrode and device longevity in vivo, and formation of encapsulating fibrous tissue. To overcome these challenges, organic conductors with unique chemical and physical properties are being explored. They hold great promise as coatings for neural interfaces, offering more rapid regulatory pathways and clinical implementation than standalone bioelectronics. This study provides a comprehensive review of the potential benefits of organic coatings in neuromodulation electrodes and the challenges that limit their effective integration into existing devices. It discusses issues related to metallic electrode use and introduces physical, electrical, and biological properties of organic coatings applied in neuromodulation. Furthermore, previously reported challenges related to organic coating stability, durability, manufacturing, and biocompatibility are thoroughly reviewed and proposed coating adhesion mechanisms are summarized. Understanding organic coating properties, modifications, and current challenges of organic coatings in clinical and industrial settings is expected to provide valuable insights for their future development and integration into organic bioelectronics.

5.
APL Bioeng ; 7(3): 031503, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37692375

RESUMO

Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.

6.
Biofabrication ; 15(3)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37094574

RESUMO

Emerging materials and electrode technologies have potential to revolutionise development of higher resolution next-generation, bionic devices. However, barriers associated with the extended timescales, regulatory constraints, and opportunity costs of preclinical and clinical studies, can inhibit such innovation. Development ofin vitromodels that mimic human tissues would provide an enabling platform to overcome many of these barriers in the product development pathway. This research aimed to develop human-scale tissue engineered cochlea models for high throughput evaluation of cochlear implants on the bench. Novel mould-casting techniques and stereolithography three-dimensional (3D) printing approaches to template hydrogels into spiral-shaped structures resembling the scala tympani were compared. While hydrogels are typically exploited to support 3D tissue-like structures, the challenge lies in developing irregular morphologies like the scala tympani, in which the cochlear electrodes are commonly implanted. This study successfully developed human-scale scala tympani-like hydrogel structures that support viable cell adhesion and can accommodate cochlear implants for future device testing.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Rampa do Tímpano/cirurgia , Cóclea/cirurgia , Implante Coclear/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36086039

RESUMO

The application of transparent conductive films to flexible biomedical optoelectronics is limited by stringent requirements on the candidate materials' electromechanical and optical properties as well as their biological performance. Thin films of graphene and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) are sought as mechanically flexible alternatives to traditional indium tin oxide (ITO). However, they require more understanding of their suitability for biomedical optoelectronic devices in terms of transmission behavior and electromechanical stability. This study shows that the relative increase in sheet resistance under cyclic loading for ITO, graphene, and PEDOT:PSS was 3546±3908%,12±2.7%, and 62±68%, respectively. Moreover, graphene and PEDOT:PSS showed a transmission uniformity of 9.3% and 36.3% (380-2000 nm), respectively, compared with ITO film (61%). Understanding the optical, electrical, and mechanical limits of the transparent conductive films facilitates the optimization of flexible optoelectronic designs to fit multiple biomedical research and clinical applications.


Assuntos
Grafite , Condutividade Elétrica , Eletrodos , Filmes Cinematográficos
8.
IEEE Trans Biomed Eng ; 69(5): 1674-1684, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34757898

RESUMO

Recording and monitoring electrically-excitable cells is critical to understanding the complex cellular networking within organs as well as the processes underlying many electro-physiological pathologies. Biopotential recording using an optical-electrode (optrode) is a novel approach which has potential to significantly improve interface-instrumentation impedance mismatching as recording contact-sizes become smaller and smaller. Optrodes incorporate a conductive interface that can sense extracellular potential and an underlying layer of liquid crystals that passively transduces electrical signals into measurable optical signals. This study investigates the impedance properties of this optical technology by varying the diameter of recording sites and observing the corresponding changes in the impedance values. The results show that the liquid crystals in this optrode platform exhibit input impedance values (1 MΩ - 100 GΩ) that are three orders of magnitude higher than the corresponding interface impedance, which is appropriate for voltage sensing. The automatic scaling of the input impedance enabled within the optrode system maintains a relatively constant ratio between input and total system impedance of about one for sensing areas with diameters ranging from 40 µm to 1 mm, at which the calculated signal loss is predicted to be <1%. This feature preserves the interface-transducer impedance ratio, regardless of the size of the recording site, allowing development of passive optrode arrays capable of very high spatial-resolution recordings.


Assuntos
Impedância Elétrica , Eletrodos
9.
Front Neurosci ; 15: 761525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803592

RESUMO

Active implantable neurological devices like deep brain stimulators have been used over the past few decades to treat movement disorders such as those in people with Parkinson's disease and more recently, in psychiatric conditions like obsessive compulsive disorder. Electrode-tissue interfaces that support safe and effective targeting of specific brain regions are critical to success of these devices. Development of directional electrodes that activate smaller volumes of brain tissue requires electrodes to operate safely with higher charge densities. Coatings such as conductive hydrogels (CHs) provide lower impedances and higher charge injection limits (CILs) than standard platinum electrodes and support safer application of smaller electrode sizes. The aim of this study was to examine the chronic in vivo performance of a new low swelling CH coating that supports higher safe charge densities than traditional platinum electrodes. A range of hydrogel blends were engineered and their swelling and electrical performance compared. Electrochemical performance and stability of high and low swelling formulations were compared during insertion into a model brain in vitro and the formulation with lower swelling characteristics was chosen for the in vivo study. CH-coated or uncoated Pt electrode arrays were implanted into the brains of 14 rats, and their electrochemical performance was tested weekly for 8 weeks. Tissue response and neural survival was assessed histologically following electrode array removal. CH coating resulted in significantly lower voltage transient impedance, higher CIL, lower electrochemical impedance spectroscopy, and higher charge storage capacity compared to uncoated Pt electrodes in vivo, and this advantage was maintained over the 8-week implantation. There was no significant difference in evoked potential thresholds, signal-to-noise ratio, tissue response or neural survival between CH-coated and uncoated Pt groups. The significant electrochemical advantage and stability of CH coating in the brain supports the suitability of this coating technology for future development of smaller, higher fidelity electrode arrays with higher charge density requirement.

10.
Biointerphases ; 16(1): 011202, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33706526

RESUMO

Fabrication of three-dimensional (3D) constructs to model body tissues and organs can contribute to research into tissue development and models for studying disease, as well as supporting preclinical drug screening in vitro. Furthermore, 3D constructs can also be used for diagnosis and therapy of disease conditions via lab on a chip and microarrays for diagnosis and engineered products for tissue repair, replacement, and regeneration. While cell culture approaches for studying tissue development and disease in two dimensions are long-established, the translation of this knowledge into 3D environments remains a fertile field of research. In this Tutorial, we specifically focus on the application of biosynthetic hydrogels for neural cell encapsulation. The Tutorial briefly covers background on using biosynthetic hydrogels for cell encapsulation, as well as common fabrication techniques. The Methods section focuses on the hydrogel design and characterization, highlighting key elements and tips for more effective approaches. Coencapsulation of different cell types, and the challenges associated with different growth and maintenance requirements, is the main focus of this Tutorial. Much care is needed to blend different cell types, and this Tutorial provides tips and insights that have proven successful for 3D coculture in biosynthetic hydrogels.


Assuntos
Biomimética , Neurônios/citologia , Alicerces Teciduais/química , Animais , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Imobilizadas/citologia , Técnicas de Cocultura , Fenômenos Eletrofisiológicos , Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Crescimento Neuronal , Células PC12 , Álcool de Polivinil/química , Ratos , Células de Schwann/citologia , Esferoides Celulares/citologia , Tiramina/química
11.
IEEE Trans Biomed Eng ; 67(12): 3510-3520, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32340929

RESUMO

OBJECTIVE: This study evaluated subthreshold biphasic stimulation pulses as a strategy to stabilize electrode impedance via control of protein adsorption. Following implantation, cochlear electrodes undergo impedance fluctuations thought to be caused by protein adsorption and/or inflammatory responses. Impedance increases can impact device power consumption, safe charge injection limits, and long-term stability of electrodes. METHODS: Protein-mediated changes in polarization impedance (Zp) were measured by voltage transient responses to biphasic current pulses and electrochemical impedance spectroscopy, with and without protein solutions. Four subthreshold stimulation regimes were studied to assess their effects on protein adsorption and impedance; (1) symmetric charge-balanced pulses delivered continuously, (2) at 10% duty cycle, (3) at 1% duty cycle, and (4) an asymmetric charge balanced pulse delivered continuously with a cathodic phase twice as long as the anodic phase. RESULTS: The Zp of electrodes incubated in protein solutions without stimulation for 2 h increased by between ∼28% and ∼55%. Subthreshold stimulation reduced the rate at which impedance increased following exposure to all protein solutions. Decreases in Zp were dependent on the type of protein solution and the stimulation regime. Subthreshold stimulation pulses were more effective when delivered continuously compared to 1% and 10% duty cycles. CONCLUSION: These results support the potential of subthreshold stimulation pulses to mitigate protein-mediated increase in impedance. SIGNIFICANCE: This research highlights the potential of clinically translatable stimulation pulses to mitigate perilymph protein adsorption on cochlear electrodes, a key phenomenon precursor of the inflammatory response.


Assuntos
Implantes Cocleares , Platina , Cóclea , Impedância Elétrica , Estimulação Elétrica , Eletrodos
12.
J Neural Eng ; 17(2): 026018, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32135529

RESUMO

OBJECTIVE: Evaluate electrochemical properties, biological response, and surface characterization of a conductive hydrogel (CH) coating following chronic in vivo stimulation. APPROACH: Coated CH or uncoated smooth platinum (Pt) electrode arrays were implanted into the cochlea of rats and stimulated over a 5 week period with more than 57 million biphasic current pulses. Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured on the bench before and after stimulation, and in vivo during the stimulation program. Electrically-evoked auditory brainstem responses were recorded to monitor neural function. Following explant, the cochleae were examined histologically and electrodes were examined using scanning electron microscopy. MAIN RESULTS: CH coated electrodes demonstrated a bench-top electrochemical advantage over Pt electrodes before and after the electrical stimulation program. In vivo, CH coated electrodes also had a significant advantage over Pt electrodes throughout the stimulation program, exhibiting higher CSC (p= 0.002), larger CIL (p = 0.002), and lower VT impedance (p < 0.001). The CH cohort exhibited a greater tissue response (p= 0.003) with small deposits of particulate material within the tissue capsule. There was no loss in auditory neuron density or change in neural response thresholds in any cochleae. Examination of the electrode surface revealed that most CH electrodes exhibited some coating loss; however, there was no evidence of corrosion in the underlying Pt. SIGNIFICANCE: CH coated electrodes demonstrated significant electrochemical advantages on the bench-top and in vivo and maintained neural function despite an increased tissue response and coating loss. While further research is required to understand the cause of the coating loss, CH electrodes provide promise for use in neural prostheses.


Assuntos
Implantes Cocleares , Animais , Cóclea , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Potenciais Evocados Auditivos do Tronco Encefálico , Hidrogéis , Ratos
13.
J Neural Eng ; 17(1): 016015, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652427

RESUMO

OBJECTIVE: To systematically compare the in vitro electrochemical and mechanical properties of several electrode coatings that have been reported to increase the efficacy of medical bionics devices by increasing the amount of charge that can be delivered safely to the target neural tissue. APPROACH: Smooth platinum (Pt) ring and disc electrodes were coated with reduced graphene oxide, conductive hydrogel, or electrodeposited Pt-Ir. Electrodes with coatings were compared with uncoated smooth Pt electrodes before and after an in vitro accelerated aging protocol. The various coatings were compared mechanically using the adhesion-by-tape test. Electrodes were stimulated in saline for 24 hours/day 7 days/week for 21 d at 85 °C (1.6-year equivalence) at a constant charge density of 200 µC/cm2/phase. Electrodes were graded on surface corrosion and trace analysis of Pt in the electrolyte after aging. Electrochemical measurements performed before, during, and after aging included electrochemical impedance spectroscopy, cyclic voltammetry, and charge injection limit and impedance from voltage transient recordings. MAIN RESULTS: All three coatings adhered well to smooth Pt and exhibited electrochemical advantage over smooth Pt electrodes prior to aging. After aging, graphene coated electrodes displayed a stimulation-induced increase in impedance and reduction in the charge injection limit (p  < 0.001), alongside extensive corrosion and release of Pt into the electrolyte. In contrast, both conductive hydrogel and Pt-Ir coated electrodes had smaller impedances and larger charge injection limits than smooth Pt electrodes (p  < 0.001) following aging regardless of the stimulus level and with little evidence of corrosion or Pt dissolution. SIGNIFICANCE: This study rigorously tested the mechanical and electrochemical performance of electrode coatings in vitro and provided suitable candidates for future in vivo testing.


Assuntos
Materiais Revestidos Biocompatíveis/química , Técnicas Eletroquímicas/métodos , Galvanoplastia/métodos , Grafite/química , Hidrogéis/química , Platina/química , Implantes Cocleares , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos Implantados
14.
Front Neurosci ; 13: 1349, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920510

RESUMO

Intracortical electrodes for brain-machine interfaces rely on intimate contact with tissues for recording signals and stimulating neurons. However, the long-term viability of intracortical electrodes in vivo is poor, with a major contributing factor being the development of a glial scar. In vivo approaches for evaluating responses to intracortical devices are resource intensive and complex, making statistically significant, high throughput data difficult to obtain. In vitro models provide an alternative to in vivo studies; however, existing approaches have limitations which restrict the translation of the cellular reactions to the implant scenario. Notably, there is no current robust model that includes astrocytes, microglia, oligodendrocytes and neurons, the four principle cell types, critical to the health, function and wound responses of the central nervous system (CNS). In previous research a co-culture of primary mouse mature mixed glial cells and immature neural precursor cells were shown to mimic several key properties of the CNS response to implanted electrode materials. However, the method was not robust and took up to 63 days, significantly affecting reproducibility and widespread use for assessing brain-material interactions. In the current research a new co-culture approach has been developed and evaluated using immunocytochemistry and quantitative polymerase chain reaction (qPCR). The resulting method reduced the time in culture significantly and the culture model was shown to have a genetic signature similar to that of healthy adult mouse brain. This new robust CNS culture model has the potential to significantly improve the capacity to translate in vitro data to the in vivo responses.

15.
Acta Biomater ; 95: 269-284, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500450

RESUMO

Promoting nerve regeneration requires engineering cellular carriers to physically and biochemically support neuronal growth into a long lasting functional tissue. This study systematically evaluated the capacity of a biosynthetic poly(vinyl alcohol) (PVA) hydrogel to support growth and differentiation of co-encapsulated neurons and glia. A significant challenge is to understand the role of the dynamic degradable hydrogel mechanical properties on expression of relevant cellular morphologies and function. It was hypothesised that a carrier with mechanical properties akin to neural tissue will provide glia with conditions to thrive, and that glia in turn will support neuronal survival and development. PVA co-polymerised with biological macromolecules sericin and gelatin (PVA-SG) and with tailored nerve tissue-like mechanical properties were used to encapsulate Schwann cells (SCs) alone and subsequently a co-culture of SCs and neural-like PC12s. SCs were encapsulated within two PVA-SG gel variants with initial compressive moduli of 16 kPa and 2 kPa, spanning a range of reported mechanical properties for neural tissues. Both hydrogels were shown to support cell viability and expression of extracellular matrix proteins, however, SCs grown within the PVA-SG with a higher initial modulus were observed to present with greater physiologically relevant morphologies and increased expression of extracellular matrix proteins. The higher modulus PVA-SG was subsequently shown to support development of neuronal networks when SCs were co-encapsulated with PC12s. The lower modulus hydrogel was unable to support effective development of neural networks. This study demonstrates the critical link between hydrogel properties and glial cell phenotype on development of functional neural tissues. STATEMENT OF SIGNIFICANCE: Hydrogels as platforms for tissue regeneration must provide encapsulated cellular progenitors with physical and biochemical cues for initial survival and to support ongoing tissue formation as the artificial network degrades. While most research focuses on tailoring scaffold properties to suit neurons, this work aims to support glia SCs as the key cellular component that physically and biochemically supports the neuronal network. The challenge is to modify hydrogel properties to support growth and development of multiple cell types into a neuronal network. Given SCs ability to respond to substrate mechanical properties, the significance of this work lies in understanding the relationship between dynamic hydrogel mechanical properties and glia SCs development as the element that enables formation of mature, differentiated neural networks.


Assuntos
Hidrogéis/farmacologia , Rede Nervosa/fisiologia , Engenharia Tecidual/métodos , Animais , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Colágeno Tipo IV/metabolismo , Matriz Extracelular/química , Laminina/metabolismo , Rede Nervosa/efeitos dos fármacos , Células PC12 , Álcool de Polivinil/farmacologia , Ratos , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Alicerces Teciduais/química
16.
Adv Healthc Mater ; 6(9)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28198591

RESUMO

Conducting hydrogels (CHs) are an emerging technology in the field of medical electrodes and brain-machine interfaces. The greatest challenge to the fabrication of CH electrodes is the hybridization of dissimilar polymers (conductive polymer and hydrogel) to ensure the formation of interpenetrating polymer networks (IPN) required to achieve both soft and electroactive materials. A new hydrogel system is developed that enables tailored placement of covalently immobilized dopant groups within the hydrogel matrix. The role of immobilized dopant in the formation of CH is investigated through covalent linking of sulfonate doping groups to poly(vinyl alcohol) (PVA) macromers. These groups control the electrochemical growth of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and subsequent material properties. The effect of dopant density and interdopant spacing on the physical, electrochemical, and mechanical properties of the resultant CHs is examined. Cytocompatible PVA hydrogels with PEDOT penetration throughout the depth of the electrode are produced. Interdopant spacing is found to be the key factor in the formation of IPNs, with smaller interdopant spacing producing CH electrodes with greater charge storage capacity and lower impedance due to increased PEDOT growth throughout the network. This approach facilitates tailorable, high-performance CH electrodes for next generation, low impedance neuroprosthetic devices.


Assuntos
Eletrodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Álcool de Polivinil/química
17.
Biomater Res ; 20: 30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713832

RESUMO

BACKGROUND: Dityrosine crosslinking in proteins is a bioinspired method of forming hydrogels. This study compares oxidative enzyme initiators for their relative crosslinking efficiency and cytocompatibility using the same phenol group and the same material platform. Four common enzyme and enzyme-like oxidative initiators were probed for resulting material properties and cell viability post-encapsulation. RESULTS: All four initiators can be used to form phenol-crosslinked hydrogels, however gelation rates are dependent on enzyme type, concentration, and the oxidant. Horseradish peroxidase (HRP) or hematin with hydrogen peroxide led to a more rapid poly (vinyl alcohol)-tyramine (PVA-Tyr) polymerization (10-60 min) because a high oxidant concentration was dissolved within the macromer solution at the onset of crosslinking, whereas laccase and tyrosinase require oxygen diffusion to crosslink phenol residues and therefore took longer to gel (2.5+ hours). The use of hydrogen peroxide as an oxidant reduced cell viability immediately post-encapsulation. Laccase- and tyrosinase-mediated encapsulation of cells resulted in higher cell viability immediately post-encapsulation and significantly higher cell proliferation after one week of culture. CONCLUSIONS: Overall this study demonstrates that HRP/H2O2, hematin/H2O2, laccase, and tyrosinase can create injectable, in situ phenol-crosslinked hydrogels, however oxidant type and concentration are critical parameters to assess when phenol crosslinking hydrogels for cell-based applications.

18.
Macromol Biosci ; 16(8): 1103-21, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27188690

RESUMO

Traditionally, conductive materials for electrodes are based on high modulus metals or alloys. Development of bioelectrodes that mimic the mechanical properties of the soft, low modulus tissues in which they are implanted is a rapidly expanding field of research. Many polymers exist that more closely match tissue mechanics than metals; however, the majority do not conduct charge. Integrating conductive properties via incorporation of metals and other conductors into nonconductive polymers is a successful approach to producing polymers that can be used in electrical interfacing devices. When combining conductive materials with nonconductive polymer matrices, there is often a tradeoff between the electrical and mechanical properties. This review analyzes the advantages and disadvantages of approaches involving coating or layer formation, composite formation via dispersion of conductive inclusions through polymer matrices, and in situ growth of a conductive network within polymers.


Assuntos
Materiais Biocompatíveis/química , Condutividade Elétrica , Polímeros/química , Nanotubos de Carbono/química
19.
Macromol Biosci ; 15(10): 1423-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26097045

RESUMO

A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d.


Assuntos
Fibroblastos/citologia , Hidrogéis/farmacologia , Álcool de Polivinil/farmacologia , Tiramina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Radicais Livres/química , Gelatina/farmacologia , Imuno-Histoquímica , Camundongos , Sericinas/farmacologia , Sus scrofa
20.
J Biomed Mater Res A ; 103(12): 3727-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26014750

RESUMO

The presentation of multiple biological cues, which simulate the natural in vivo cell environment within artificial implants, has recently been identified as crucial for achieving complex cellular functions. The incorporation of two or more biological cues within a largely synthetic network can provide a simplified model of multifunctional ECM presentation to encapsulated cells. Therefore, the aim of this study was to examine the effects of simultaneously and covalently incorporating two dissimilar biological molecules, heparin and gelatin, within a PVA hydrogel. PVA was functionalized with 7 and 20 methacrylate functional groups per chain (FG/c) to tailor the permselectivity of UV photopolymerized hydrogels. Both heparin and gelatin were covalently incorporated into PVA at an equal ratio resulting in a final PVA:heparin:gelatin composition of 19:0.5:0.5. The combination of both heparin and gelatin within a PVA network has proven to be stable over time without compromising the PVA base characteristics including its permselectivity to different proteins. Most importantly, this combination of ECM analogues supplemented PVA with the dual functionalities of promoting cellular adhesion and sequestering growth factors essential for cellular proliferation. Multi-functional PVA hydrogels with synthetically controlled network characteristics and permselectivity show potential in various biomedical applications including artificial cell implants.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Heparina/química , Hidrogéis/química , Álcool de Polivinil/química , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Gelatina/metabolismo , Gelatina/farmacologia , Heparina/metabolismo , Heparina/farmacologia , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Camundongos , Permeabilidade , Álcool de Polivinil/metabolismo , Álcool de Polivinil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...