Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Chromosome Res ; 31(1): 4, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695960

RESUMO

Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.


Assuntos
Placenta , Inativação do Cromossomo X , Humanos , Feminino , Gravidez , Cromossomo X
2.
Tissue Eng Part A ; 22(3-4): 375-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26871862

RESUMO

While subcutaneous tissue has been proposed as a clinically relevant site for pancreatic islet transplantation, a major issue of concern remains, which is its poor vascular state. In an effort to overcome this limitation, we present an efficient and reproducible method to form human composite islets (CIs) with proangiogenic cell types in a controlled manner using nonadherent agarose microwell templates. In this study, we assessed the three-dimensional structure, function, and angiogenic potential of human CIs with human mesenchymal stromal cells (hMSCs), with or without human umbilical vein endothelial cells (HUVECs), and preconditioned hMSCs (PC-hMSCs) in EGM-2 under shear stress. Distinct cellular rearrangements could be observed in CIs, but islet functionality was maintained. In vitro angiogenesis assays found significantly enhanced sprout formation in case of CIs. In particular, the number of sprouts emanating from CIs with PC-hMSCs was significantly increased compared to other conditions. Subsequent in vivo assessment confirmed the proangiogenic potential of CIs. However, in contrast to our in vitro angiogenesis assays, CIs with hMSCs and HUVECs exhibited a higher in vivo angiogenic potential compared to control islets or islets combined with hMSCs or PC-hMSCs. These findings highlight the importance and necessity of verifying in vitro studies with in vivo models to reliably predict, in this case, revascularization outcomes. Regardless, we demonstrate here the therapeutic potential of CIs with proangiogenic support cells to enhance islet revascularization at a clinically relevant, although poorly vascularized, transplantation site.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/citologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Células-Tronco Mesenquimais/metabolismo
3.
J Tissue Eng Regen Med ; 10(5): 363-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-23592688

RESUMO

Modular tissue engineering is a strategy to create scalable, self-assembling, three-dimensional (3D) tissue constructs. This strategy was used to deliver endothelial-like cells derived from bone marrow mesenchymal stromal cells (EL-MSCs) to locally induce vascularization. First, tissue engineered modules were formed, comprising EL-MSCs and collagen-based cylinders. Seven days of module culture in a microfluidic chamber under continuous flow resulted in the formation of interstices, formed by random packing of the modules, which served as channels and were lined by the EL-MSCs. We observed maintenance of the endothelial phenotype of the EL-MSCs, as demonstrated by CD31 staining, and the cells proliferated well. Next, collagen modules covered with EL-MSCs, with or without embedded MSCs, were implanted subcutaneously in immune-compromised SCID/Bg mice. After 7 days, CD31-positive vessels were observed in the samples. These data demonstrate the feasibility of EL-MSCs coated collagen module as a strategy to locally stimulate angiogenesis and vasculogenesis. Copyright © 2013 John Wiley & Sons, Ltd.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Animais , Linhagem Celular Transformada , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Xenoenxertos , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos SCID
4.
Stem Cells Dev ; 24(16): 1946-55, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25915705

RESUMO

The ability of human mesenchymal stromal/stem cells (hMSCs) to differentiate into various mesenchymal cell lineages makes them a promising cell source for the use in tissue repair strategies. Since the differentiation potential of hMSCs differs between donors, it is necessary to establish biomarkers for the identification of donors with high differentiation potential. In this study, we show that microRNA (miRNA) expression levels are effective for distinguishing donors with high differentiation potential from low differentiation potential. Twenty hMSC donors were initially tested for marker expression and differentiation potential. In particular, the chondrogenic differentiation potential was evaluated on the basis of histological matrix formation, mRNA expression levels of chondrogenic marker genes, and quantitative glycosaminoglycan deposition. Three donors out of twenty were identified as donors with high chondrogenic potential, whereas nine showed moderate and eight showed low chondrogenic potential. Expression profiles of miRNAs involved in chondrogenesis and cartilage homeostasis were used for the distinction between high-performance hMSCs and low-performance hMSCs. Global mRNA expression profiles of the donors before the onset of chondrogenic differentiation revealed minor differences in gene expression between low and high chondrogenic performers. However, analysis of miRNA expression during a 7-day differentiation period identified miR-210 and miR-630 as positive regulators of chondrogenesis. In contrast, miR-181 and miR-34a, which are negative regulators of chondrogenesis, were upregulated during differentiation in low-performing donors. In conclusion, profiling of hMSC donors for a specific panel of miRNAs may have a prognostic value for selecting donors with high differentiation potential to improve hMSC-based strategies for tissue regeneration.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Condrogênese , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Doadores de Tecidos , Transcriptoma
5.
Tissue Eng Part A ; 20(3-4): 819-29, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24070233

RESUMO

Angiogenesis and neovascularization are fundamental for the success of clinically relevant-sized tissue-engineered (TE) constructs. The next generation of TE constructs relies on providing instructive materials combined with the delivery of angiogenic growth factors and cells to avoid tissue ischemia. However, the majority of materials and cell types screened so far show limited clinical relevance, either due to insufficient number of cells or due to the use of animal-derived matrixes. Here, we investigated whether endothelial-like cells derived from mesenchymal stromal cells (EL-MSCs) can be used for vascular TE in combination with injectable dextran-hyaluronic acid (Dex-g-HA) hydrogels. These hydrogels can be easily modified, as demonstrated by the incorporation of vascular endothelial growth factor (VEGF). We examined in vitro the reciprocal influences between cells and matrix. Dex-g-HA enabled higher EL-MSC metabolic rates associated with optimal cell sprouting in vitro compared to human umbilical vein endothelial cells. In vivo evaluation demonstrated the absence of an acute inflammatory response, and EL-MSCs incorporated within Dex-g-HA formed a functional vascular network integrated with the host vascular system. This work demonstrates that Dex-g-HA is an efficient delivery method of VEGF to induce angiogenesis. Additionally, functional neovascularization can be achieved in vitro and in vivo by the combination of Dex-g-HA with EL-MSC.


Assuntos
Dextranos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Capilares/citologia , Capilares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/patologia , Injeções , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Alicerces Teciduais/química
6.
Tissue Eng Part A ; 19(21-22): 2318-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23676150

RESUMO

Application of autologous cells is considered for a broad range of regenerative therapies because it is not surrounded by the immunological and ethical issues of allo- or xenogenic cells. However, isolation, expansion, and application of autologous cells do suffer from variability in therapeutic efficacy due to donor to donor differences and due to prolonged culture. One important source of autologous cells is mesenchymal stromal cells (MSCs), which can differentiate toward endothelial-like cells, thus making them an ideal candidate as cell source for tissue vascularization. Here we screened MSCs from 20 donors for their endothelial differentiation capacity and correlated it with the gene expression profile of the whole genome in the undifferentiated state. Cells of all donors were able to form tubes on Matrigel and induced the expression of endothelial genes, although with quantitative differences. In addition, we analyzed the effect of prolonged in vitro expansion on the multipotency of human MSCs and found that endothelial differentiation is only mildly sensitive to expansion-induced loss of differentiation as compared to osteogenic and adipogenic differentiation. Our results show the robustness of the endothelial differentiation protocol and the gene expression data give insight in the differences in endothelial differentiation between donors.


Assuntos
Células-Tronco Mesenquimais/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Células Endoteliais/citologia , Humanos , Reação em Cadeia da Polimerase
7.
PLoS One ; 7(10): e46842, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056481

RESUMO

Human mesenchymal stromal cells (hMSCs) are increasingly used in regenerative medicine for restoring worn-out or damaged tissue. Newly engineered tissues need to be properly vascularized and current candidates for in vitro tissue pre-vascularization are endothelial cells and endothelial progenitor cells. However, their use in therapy is hampered by their limited expansion capacity and lack of autologous sources. Our approach to engineering large grafts is to use hMSCs both as a source of cells for regeneration of targeted tissue and at the same time as the source of endothelial cells. Here we investigate how different stimuli influence endothelial differentiation of hMSCs. Although growth supplements together with shear force were not sufficient to differentiate hMSCs with respect to expression of endothelial markers such as CD31 and KDR, these conditions did prime the cells to differentiate into cells with an endothelial gene expression profile and morphology when seeded on Matrigel. In addition, we show that endothelial-like hMSCs are able to create a capillary network in 3D culture both in vitro and in vivo conditions. The expansion phase in the presence of growth supplements was crucial for the stability of the capillaries formed in vitro. To conclude, we established a robust protocol for endothelial differentiation of hMSCs, including an immortalized MSC line (iMSCs) which allows for reproducible in vitro analysis in further studies.


Assuntos
Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Mesenquimais/citologia , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Separação Celular , Forma Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Ácido Láctico/química , Ácido Láctico/farmacologia , Masculino , Camundongos , Poliésteres , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Engenharia Tecidual , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...