Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Virology ; 600: 110231, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39278105

RESUMO

We tested the ability of six peridomestic wildlife species to replicate a highly pathogenic (HP) clade 2.3.4.4b AIV (H5N1) isolated in the U.S. during 2022. All tested species replicated and shed virus, at least to some degree. Of the six species evaluated (house sparrows (Passer domesticus), European starlings (Sturnus vulgaris), feral pigeons (Columba livia), striped skunks (Mephitis mephitis), Virginia opossums (Didelphis virginiana), and cottontails (Sylvilagus sp.)), striped skunks and Virginia opossums shed the highest viral titers of 106.3 PFU/mL and 105.0 PFU/mL, respectively. Overall, the results of this study indicate that certain peridomestic species could pose a biosecurity threat to poultry operations in some situations. In addition, this study and field reports indicate that the HP AIVs circulating in the U.S. during 2022-2024 may have an extremely broad range of species that can be impacted by and/or replicate and shed these viruses.

2.
Nat Microbiol ; 9(8): 1929-1939, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39095495

RESUMO

Legumes are ecologically and economically important plants that contribute to nutrient cycling and agricultural sustainability, features tied to their intimate symbiosis with nitrogen-fixing rhizobia. Rhizobia vary dramatically in quality, ranging from highly growth-promoting to non-beneficial; therefore, legumes must optimize their symbiosis with rhizobia through host mechanisms that select for beneficial rhizobia and limit losses to non-beneficial strains. In this Perspective, we examine the considerable scientific progress made in decoding host control over rhizobia, empirically examining both molecular and cellular mechanisms and their effects on rhizobia symbiosis and its benefits. We consider pre-infection controls, which require the production and detection of precise molecular signals by the legume to attract and select for compatible rhizobia strains. We also discuss post-infection mechanisms that leverage the nodule-level and cell-level compartmentalization of symbionts to enable host control over rhizobia development and proliferation in planta. These layers of host control each contribute to legume fitness by directing host resources towards a narrowing subset of more-beneficial rhizobia.


Assuntos
Fabaceae , Fixação de Nitrogênio , Rhizobium , Simbiose , Fabaceae/microbiologia , Rhizobium/fisiologia , Rhizobium/metabolismo , Interações entre Hospedeiro e Microrganismos , Nódulos Radiculares de Plantas/microbiologia , Nodulação
3.
J Neuroeng Rehabil ; 21(1): 84, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802847

RESUMO

BACKGROUND: Sleep disturbance and fatigue are common in individuals undergoing inpatient rehabilitation following stroke. Understanding the relationships between sleep, fatigue, motor performance, and key biomarkers of inflammation and neuroplasticity could provide valuable insight into stroke recovery, possibly leading to personalized rehabilitation strategies. This study aimed to investigate the influence of sleep quality on motor function following stroke utilizing wearable technology to obtain objective sleep measurements. Additionally, we aimed to determine if there were relationships between sleep, fatigue, and motor function. Lastly, the study aimed to determine if salivary biomarkers of stress, inflammation, and neuroplasticity were associated with motor function or fatigue post-stroke. METHODS: Eighteen individuals who experienced a stroke and were undergoing inpatient rehabilitation participated in a cross-sectional observational study. Following consent, participants completed questionnaires to assess sleep patterns, fatigue, and quality of life. Objective sleep was measured throughout one night using the wearable Philips Actiwatch. Upper limb motor performance was assessed on the following day and saliva was collected for biomarker analysis. Correlation analyses were performed to assess the relationships between variables. RESULTS: Participants reported poor sleep quality, frequent awakenings, and difficulties falling asleep following stroke. We identified a significant negative relationship between fatigue severity and both sleep quality (r=-0.539, p = 0.021) and participants experience of awakening from sleep (r=-0.656, p = 0.003). A significant positive relationship was found between grip strength on the non-hemiplegic limb and salivary gene expression of Brain-derived Neurotrophic Factor (r = 0.606, p = 0.028), as well as a significant negative relationship between grip strength on the hemiplegic side and salivary gene expression of C-reactive Protein (r=-0.556, p = 0.048). CONCLUSION: The findings of this study emphasize the importance of considering sleep quality, fatigue, and biomarkers in stroke rehabilitation to optimize recovery and that interventions may need to be tailored to the individual. Future longitudinal studies are required to explore these relationships over time. Integrating wearable technology for sleep and biomarker analysis can enhance monitoring and prediction of outcomes following stroke, ultimately improving rehabilitation strategies and patient outcomes.


Assuntos
Actigrafia , Biomarcadores , Fadiga , Saliva , Reabilitação do Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Masculino , Feminino , Fadiga/etiologia , Fadiga/diagnóstico , Pessoa de Meia-Idade , Biomarcadores/análise , Estudos Transversais , Actigrafia/instrumentação , Idoso , Saliva/metabolismo , Saliva/química , Sono/fisiologia , Adulto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Movimento/fisiologia
4.
Proc Natl Acad Sci U S A ; 121(13): e2311127121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507447

RESUMO

Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.


Assuntos
Metais Pesados , Rhizobium , Humanos , Rhizobium/genética , Níquel , Metais Pesados/toxicidade , Genômica , Solo
5.
Emerg Infect Dis ; 30(2): 354-357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270133

RESUMO

To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.


Assuntos
COVID-19 , Cervos , Animais , COVID-19/veterinária , SARS-CoV-2 , Equidae
6.
Pathogens ; 12(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242308

RESUMO

Invasive feral swine (Sus scrofa) are one of the most important wildlife species for disease surveillance in the United States, serving as a reservoir for various diseases of concern for the health of humans and domestic animals. Brucella suis, the causative agent of swine brucellosis, is one such pathogen carried and transmitted by feral swine. Serology assays are the preferred field diagnostic for B. suis infection, as whole blood can be readily collected and antibodies are highly stable. However, serological assays frequently have lower sensitivity and specificity, and few studies have validated serological assays for B. suis in feral swine. We conducted an experimental infection of Ossabaw Island Hogs (a breed re-domesticated from feral animals) as a disease-free proxy for feral swine to (1) improve understanding of bacterial dissemination and antibody response following B. suis infection and (2) evaluate potential changes in the performance of serological diagnostic assays over the course of infection. Animals were inoculated with B. suis and serially euthanized across a 16-week period, with samples collected at the time of euthanasia. The 8% card agglutination test performed best, whereas the fluorescence polarization assay demonstrated no capacity to differentiate true positive from true negative animals. From a disease surveillance perspective, using the 8% card agglutination test in parallel with either the buffered acidified plate antigen test or the Brucella abortus/suis complement fixation test provided the best performance with the highest probability of a positive assay result. Application of these combinations of diagnostic assays for B. suis surveillance among feral swine would improve understanding of spillover risks at the national level.

7.
Virology ; 582: 100-105, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043909

RESUMO

Influenza A viruses are a diverse group of pathogens that have been responsible for millions of human and avian deaths throughout history. Here, we illustrate the transmission potential of H7N9 influenza A virus between Coturnix quail (Coturnix sp.), domestic ducks (Anas platyrhynchos domesticus), chickens (Gallus gallus domesticus), and house sparrows (Passer domesticus) co-housed in an artificial barnyard setting. In each of four replicates, individuals from a single species were infected with the virus. Quail shed virus orally and were a source of infection for both chickens and ducks. Infected chickens transmitted the virus to quail but not to ducks or house sparrows. Infected ducks transmitted to chickens, resulting in seroconversion without viral shedding. House sparrows did not shed virus sufficiently to transmit to other species. These results demonstrate that onward transmission varies by index species, and that gallinaceous birds are more likely to maintain H7N9 than ducks or passerines.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Galinhas , Coturnix , Patos , Eliminação de Partículas Virais
8.
Proc Biol Sci ; 290(1990): 20222153, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598018

RESUMO

In mutualism, hosts select symbionts via partner choice and preferentially direct more resources to symbionts that provide greater benefits via sanctions. At the initiation of symbiosis, prior to resource exchange, it is not known how the presence of multiple symbiont options (i.e. the symbiont social environment) impacts partner choice outcomes. Furthermore, little research addresses whether hosts primarily discriminate among symbionts via sanctions, partner choice or a combination. We inoculated the legume, Acmispon wrangelianus, with 28 pairs of fluorescently labelled Mesorhizobium strains that vary continuously in quality as nitrogen-fixing symbionts. We find that hosts exert robust partner choice, which enhances their fitness. This partner choice is conditional such that a strain's success in initiating nodules is impacted by other strains in the social environment. This social genetic effect is as important as a strain's own genotype in determining nodulation and has both transitive (consistent) and intransitive (idiosyncratic) effects on the probability that a symbiont will form a nodule. Furthermore, both absolute and conditional partner choice act in concert with sanctions, among and within nodules. Thus, multiple forms of host discrimination act as a series of sieves that optimize host benefits and select for costly symbiont cooperation in mixed symbiont populations.


Assuntos
Fabaceae , Simbiose/genética , Fixação de Nitrogênio , Genótipo , Nitrogênio
9.
Evol Appl ; 15(10): 1521-1536, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330300

RESUMO

The rhizosphere has been called "one of the most complex ecosystems on earth" because it is a hotspot for interactions among millions of microbial cells. Many of these are microbes are also participating in a dynamic interplay with host plant tissues, signaling pathways, and metabolites. Historically, breeders have employed a plant-centric perspective when trying to harness the potential of microbiome-derived benefits to improve productivity and resilience of economically important plants. This is potentially problematic because: (i) the evolution of the microbes themselves is often ignored, and (ii) it assumes that the fitness of interacting plants and microbes is strictly aligned. In contrast, a microbe-centric perspective recognizes that putatively beneficial microbes are still under selection to increase their own fitness, even if there are costs to the host. This can lead to the evolution of sophisticated, potentially subtle, ways for microbes to manipulate the phenotype of their hosts, as well as other microbes in the rhizosphere. We illustrate this idea with a review of cases where rhizosphere microbes have been demonstrated to directly manipulate host root growth, architecture and exudation, host nutrient uptake systems, and host immunity and defense. We also discuss indirect effects, whereby fitness outcomes for the plant are a consequence of ecological interactions between rhizosphere microbes. If these consequences are positive for the plant, they can potentially be misconstrued as traits that have evolved to promote host growth, even if they are a result of selection for unrelated functions. The ubiquity of both direct microbial manipulation of hosts and context-dependent, variable indirect effects leads us to argue that an evolutionary perspective on rhizosphere microbial ecology will become increasingly important as we continue to engineer microbial communities for crop production.

10.
Am J Vet Res ; 83(12)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36327167

RESUMO

OBJECTIVE: To evaluate efficacy of a novel vaccine against rabbit hemorrhagic disease virus 2 (RHDV2) in domestic rabbits. ANIMALS: 40 New Zealand White rabbits obtained from a commercial breeder. PROCEDURES: Rabbits were vaccinated and held at the production facility for the duration of the vaccination phase and transferred to Colorado State University for challenge with RHDV2. Rabbits were challenged with oral suspensions containing infectious virus and monitored for clinical disease for up to 10 days. Rabbits that died or were euthanized following infection were necropsied, and livers were evaluated for viral RNA via RT-PCR. RESULTS: None of the vaccinated animals (0/9) exhibited clinical disease or mortality following infection with RHDV2 while 9/13 (69%) of the control animals succumbed to lethal disease following infection. CLINICAL RELEVANCE: The novel vaccine described herein provided complete protection against lethal infection following RHDV2 challenge. Outside of emergency use, there are currently no licensed vaccines against RHDV2 on the market in the United States; as such, this vaccine candidate would provide an option for control of this disease now that RHDV2 has become established in North America.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinas , Coelhos , Animais , Vírus da Doença Hemorrágica de Coelhos/genética , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/veterinária , Vacinação/veterinária
11.
Viruses ; 14(8)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36016431

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presumed to have originated from wildlife and shares homology with other bat coronaviruses. Determining the susceptibility of North American bat species to SARS-CoV-2 is of utmost importance for making decisions regarding wildlife management, public health, and conservation. In this study, Brazilian free-tailed bats (Tadarida brasiliensis) were experimentally infected with two strains of SARS-CoV-2 (parental WA01 and Delta variant), evaluated for clinical disease, sampled for viral shedding and antibody production, and analyzed for pathology. None of the bats (n = 18) developed clinical disease associated with infection, shed infectious virus, or developed histopathological lesions associated with SARS-CoV-2 infection. All bats had low levels of viral RNA in oral swabs, six bats had low levels of viral RNA present in the lungs during acute infection, and one of the four bats that were maintained until 28 days post-infection developed a neutralizing antibody response. These findings suggest that Brazilian free-tailed bats are permissive to infection by SARS-CoV-2, but they are unlikely to contribute to environmental maintenance or transmission.


Assuntos
COVID-19 , Quirópteros , Animais , Animais Selvagens , Humanos , RNA Viral , SARS-CoV-2/genética
12.
Front Microbiol ; 13: 923281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783378

RESUMO

Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.

13.
Emerg Infect Dis ; 28(9): 1852-1855, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830965

RESUMO

We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2.


Assuntos
COVID-19 , Coiotes , Animais , Raposas , SARS-CoV-2
14.
J Evol Biol ; 35(6): 844-854, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35506571

RESUMO

In mutualisms, variation at genes determining partner fitness provides the raw material upon which coevolutionary selection acts, setting the dynamics and pace of coevolution. However, we know little about variation in the effects of genes that underlie symbiotic fitness in natural mutualist populations. In some species of legumes that form root nodule symbioses with nitrogen-fixing rhizobial bacteria, hosts secrete nodule-specific cysteine-rich (NCR) peptides that cause rhizobia to differentiate in the nodule environment. However, rhizobia can cleave NCR peptides through the expression of genes like the plasmid-borne Host range restriction peptidase (hrrP), whose product degrades specific NCR peptides. Although hrrP activity can confer host exploitation by depressing host fitness and enhancing symbiont fitness, the effects of hrrP on symbiosis phenotypes depend strongly on the genotypes of the interacting partners. However, the effects of hrrP have yet to be characterised in a natural population context, so its contribution to variation in wild mutualist populations is unknown. To understand the distribution of effects of hrrP in wild rhizobia, we measured mutualism phenotypes conferred by hrrP in 12 wild Ensifer medicae strains. To evaluate context dependency of hrrP effects, we compared hrrP effects across two Medicago polymorpha host genotypes and across two experimental years for five E. medicae strains. We show for the first time in a natural population context that hrrP has a wide distribution of effect sizes for many mutualism traits, ranging from strongly positive to strongly negative. Furthermore, we show that hrrP effect size varies across host genotypes and experiment years, suggesting that researchers should be cautious about extrapolating the role of genes in natural populations from controlled laboratory studies of single genetic variants.


Assuntos
Fabaceae , Rhizobium , Fabaceae/genética , Fabaceae/microbiologia , Negociação , Peptídeos , Rhizobium/genética , Simbiose/genética , Verduras
15.
Virology ; 568: 49-55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114499

RESUMO

West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. We examined potential ways in which alligators may contribute to the natural ecology of WNV. We experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators and that water can serve as a source of infection for alligators but does not easily serve as in intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird-mosquito transmission cycle.


Assuntos
Jacarés e Crocodilos/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , Replicação Viral , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , Aves/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Células Vero , Zoonoses Virais , Febre do Nilo Ocidental/virologia
16.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749583

RESUMO

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Assuntos
COVID-19/veterinária , Especificidade de Hospedeiro , Gado/virologia , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Camelídeos Americanos/virologia , Bovinos/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Cabras/virologia , Cavalos/virologia , Especificidade de Hospedeiro/imunologia , Humanos , Cavidade Nasal/virologia , RNA Viral/análise , Coelhos/virologia , Reto/virologia , Sistema Respiratório/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Ovinos/virologia , Especificidade da Espécie , Células Vero , Eliminação de Partículas Virais , Vísceras/virologia
17.
Vaccine ; 39(47): 6894-6901, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696935

RESUMO

Coccidioidomycosis is a significant health problem of dogs and humans in endemic regions, especially California and Arizona in the U.S. Both species would greatly benefit from a vaccine to prevent this disease. A live avirulent vaccine candidate, Δcps1, was tested for tolerability and efficacy to prevent pulmonary coccidioidomycosis in a canine challenge model. Vaccine injection-site reactions were transient and there were no systemic effects observed. Six of seven vaccine sites tested and all draining lymph nodes were sterile post-vaccination. Following infection with Coccidioides posadasii, strain Silveira, arthroconidia into the lungs, dogs given primary and booster vaccinations had significantly reduced lung fungal burdens (P = 0.0003) and composite disease scores (P = 0.0002) compared to unvaccinated dogs. Dogs vaccinated once had fungal burdens intermediate between those given two doses or none, but disease scores were not significantly different from unvaccinated (P = 0.675). Δcps1 was well-tolerated in the dogs and it afforded a high level of protection when given as prime and boost. These results drive the Δcps1 vaccine toward a licensed veterinary vaccine and support continued development of this vaccine to prevent coccidioidomycosis in humans.


Assuntos
Coccidioidomicose , Vacinas Fúngicas , Animais , Coccidioidomicose/prevenção & controle , Coccidioidomicose/veterinária , Cães , Pulmão , Esporos Fúngicos , Vacinação , Vacinas Atenuadas
18.
NPJ Vaccines ; 6(1): 122, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671047

RESUMO

Early in the SARS-CoV-2 pandemic concerns were raised regarding infection of new animal hosts and the effect on viral epidemiology. Infection of other animals could be detrimental by causing clinical disease, allowing further mutations, and bares the risk for the establishment of a non-human reservoir. Cats were the first reported animals susceptible to natural and experimental infection with SARS-CoV-2. Given the concerns these findings raised, and the close contact between humans and cats, we aimed to develop a vaccine candidate that could reduce SARS-CoV-2 infection and in addition to prevent spread among cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus, known to be safe and efficacious in a variety of animal species, could induce neutralizing antibody responses in guinea pigs and cats. The design of the SARS-CoV-2 spike immunogen was critical in developing a strong neutralizing antibody response. Vaccination of cats was able to induce high neutralizing antibody responses, effective also against the SARS-CoV-2 B.1.1.7 variant. Interestingly, in contrast to control animals, the infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after SARS-CoV-2 challenge. Correspondingly, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit the virus. The results show that the RP vaccine induces protective immunity preventing SARS-CoV-2 infection and transmission. These data suggest that this RP vaccine could be a multi-species vaccine useful to prevent infection and spread to and between animals should that approach be required.

19.
Curr Biol ; 31(17): R1049-R1050, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34520716

RESUMO

Can hosts swap ancient symbionts for new ones? A new study shows that a novel partnership between a protist and an algal symbiont can rapidly evolve to both overcome initial incompatibility and adapt to environmental challenges.


Assuntos
Eucariotos , Simbiose , Adaptação Fisiológica
20.
Emerg Infect Dis ; 27(8): 2073-2080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34286685

RESUMO

Wild animals have been implicated as the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. We show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our results expand the knowledge base of susceptible species and provide evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Animais Selvagens , Suscetibilidade a Doenças , Humanos , Mamíferos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...