Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 120, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926438

RESUMO

Epstein-Barr virus (EBV) is associated with several malignancies, neurodegenerative disorders and is the causative agent of infectious mononucleosis. A vaccine that prevents EBV-driven morbidity and mortality remains an unmet need. EBV is orally transmitted, infecting both B cells and epithelial cells. Several virally encoded proteins are involved in entry. The gH/gL glycoprotein complex is essential for infectivity irrespective of cell type, while gp42 is essential for infection of B cells. gp350 promotes viral attachment by binding to CD21 or CD35 and is the most abundant glycoprotein on the virion. gH/gL, gp42 and gp350, are known targets of neutralizing antibodies and therefore relevant immunogens for vaccine development. Here, we developed and optimized the delivery of several alphavirus-derived replicon RNA (repRNA) vaccine candidates encoding gH/gL, gH/gL/gp42 or gp350 delivered by a cationic nanocarrier termed LION™. The lead candidate, encoding full-length gH/gL, elicited high titers of neutralizing antibodies that persisted for at least 8 months and a vaccine-specific CD8+ T cell response. Transfer of vaccine-elicited IgG protected humanized mice from EBV-driven tumor formation and death following high-dose viral challenge. These data demonstrate that LION/repRNA-gH/gL is an ideal candidate vaccine for preventing EBV infection and/or related malignancies in humans.

2.
iScience ; 26(12): 108504, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38125026

RESUMO

Many promising vaccine candidates and licensed vaccines lead to variable immune responses within humans. Studies suggest that environmental exposures in the gastrointestinal tract could contribute to a reduction in vaccine efficacy via immune tolerance at this site; this is partly achieved by a high abundance of regulatory T cells (Tregs). It is unclear if Treg subsets regulate systemic vaccine responses following oral antigen pre-exposure. Here, we implemented a conditional knock-out mouse model of RORγt+ Tregs to examine the role of these cells in mediating this process. Following oral exposure to the model antigen ovalbumin (OVA) prior to immunization, we found similar induction of vaccine-induced antibody responses in mice lacking RORγt expression in Tregs compared to sufficient controls. Use of various adjuvants led to distinct findings. Our data suggest that expression of RORγt+ within Tregs is not required to regulate tolerance to systemic vaccination following oral antigen exposure.

3.
J Immunol ; 211(11): 1680-1692, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850965

RESUMO

Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.


Assuntos
Microbiota , Vacinas de DNA , Camundongos , Animais , Vacinas Baseadas em Ácido Nucleico , Linfócitos T CD8-Positivos , DNA , RNA Mensageiro , Imunização Secundária
4.
bioRxiv ; 2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36824851

RESUMO

Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific-pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. While the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle (LNP) immunization, the microbiome suppresses immunoglobulin and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA-LNP vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for their continued therapeutic development and deployment.

5.
Front Immunol ; 13: 983313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311720

RESUMO

Many participants in HIV-1 vaccine trials, who have not previously been exposed to or vaccinated against HIV-1, display serum immunoglobulin antibodies that bind the gp41 region of HIV-1 envelope prior to vaccination. Previous studies have hypothesized that these pre-existing antibodies may be cross-reactive and may skew future vaccine responses. In 12 large studies conducted by the HIV Vaccine Trial Network (HVTN) (n=1470 individuals), we find wide variation among participants in the pre-vaccine levels of gp41-reactive antibodies as measured by the binding antibody multiplex assay (BAMA). In the absence of exposure to the gp41 immunogen, anti-gp41 IgG levels were temporally stable over 26-52 weeks in repeated measures of placebo recipients. The analysis revealed that the geometric mean of pre-vaccine anti-gp41 IgG response was greater among participants in South Africa compared with participants in the United States. With gene-level metagenomic sequencing of pre-vaccination fecal samples collected from participants in one trial (HVTN 106), we detected positive associations between pre-vaccine anti-gp41 IgG and abundance of genes from multiple taxa in the Eubacteriales order. The genes most strongly associated with higher baseline anti-gp41 IgG mapped to a clade containing Blautia wexlerae and closely related strains. In trials with vaccine products containing the full or partial portion of gp41 immunogen alongside a gp120 immunogen, we did not find evidence that individuals with higher baseline anti-gp41 IgG had different levels of anti-gp120 IgG after vaccination compared to individuals with lower pre-vaccine anti-gp41 levels (pooled estimate of standardized mean difference -0.01 with a 95% CI [-0.37; 0.34]).


Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Anti-HIV , Infecções por HIV/prevenção & controle , Imunoglobulina G
6.
J Immunol ; 206(12): 2937-2948, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34088770

RESUMO

Tissue-resident memory CD8 T cells (CD8 TRM) are critical for maintaining barrier immunity. CD8 TRM have been mainly studied in the skin, lung and gut, with recent studies suggesting that the signals that control tissue residence and phenotype are highly tissue dependent. We examined the T cell compartment in healthy human cervicovaginal tissue (CVT) and found that most CD8 T cells were granzyme B+ and TCF-1- To address if this phenotype is driven by CVT tissue residence, we used a mouse model to control for environmental factors. Using localized and systemic infection models, we found that CD8 TRM in the mouse CVT gradually acquired a granzyme B+, TCF-1- phenotype as seen in human CVT. In contrast to CD8 TRM in the gut, these CD8 TRM were not stably maintained regardless of the initial infection route, which led to reductions in local immunity. Our data show that residence in the CVT is sufficient to progressively shape the size and function of its CD8 TRM compartment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Colo do Útero/imunologia , Herpes Simples/imunologia , Vagina/imunologia , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Colo do Útero/efeitos dos fármacos , Colo do Útero/virologia , Feminino , Herpes Simples/tratamento farmacológico , Herpes Simples/virologia , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/imunologia , Humanos , Injeções Subcutâneas , Acetato de Medroxiprogesterona/administração & dosagem , Acetato de Medroxiprogesterona/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Vagina/efeitos dos fármacos , Vagina/virologia , Adulto Jovem
7.
Sci Adv ; 5(12): eaaw9051, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840058

RESUMO

Epigenetic modifications play critical roles in inducing long-lasting immunological memory in innate immune cells, termed trained immunity. Whether similar epigenetic mechanisms regulate dendtritic cell (DC) function to orchestrate development of adaptive immunity remains unknown. We report that DCs matured with IFNγ and TNFα or matured in the lungs during invasive fungal infection with endogenous TNFα acquired a stable TNFα-dependent DC1 program, rendering them resistant to both antigen- and cytokine-induced alternative activation. TNFα-programmed DC1 had increased association of H3K4me3 with DC1 gene promoter regions. Furthermore, MLL1 inhibition blocked TNFα-mediated DC1 phenotype stabilization. During IFI, TNFα-programmed DC1s were required for the development of sustained TH1/TH17 protective immunity, and bone marrow pre-DCs exhibited TNFα-dependent preprogramming, supporting continuous generation of programmed DC1 throughout the infection. TNFα signaling, associated with epigenetic activation of DC1 genes particularly via H3K4me3, critically contributes to generation and sustenance of type 1/17 adaptive immunity and the immune protection against persistent infection.


Assuntos
Polaridade Celular , Citoproteção , Células Dendríticas/metabolismo , Epigênese Genética , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Polaridade Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Cryptococcus/efeitos dos fármacos , Cryptococcus/fisiologia , Citoproteção/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Imunomodulação/efeitos dos fármacos , Lisina/metabolismo , Metilação , Camundongos Endogâmicos CBA , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Supressão Genética/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Fator de Necrose Tumoral alfa/farmacologia
8.
Int J Parasitol ; 48(11): 825-832, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29906414

RESUMO

CRISPR-Cas9 mediated genome editing is addressing key limitations in the transfection of malaria parasites. While this method has already simplified the needed molecular cloning and reduced the time required to generate mutants in the human pathogen Plasmodium falciparum, optimal selection of required guide RNAs and guidelines for successful transfections have not been well characterised, leading workers to use time-consuming trial and error approaches. We used a genome-wide computational approach to create a comprehensive and publicly accessible database of possible guide RNA sequences in the P. falciparum genome. For each guide, we report on-target efficiency and specificity scores as well as information about the genomic site relevant to optimal design of CRISPR-Cas9 transfections to modify, disrupt, or conditionally knockdown any gene. As many antimalarial drug and vaccine targets are encoded by multigene families, we also developed a new paralog specificity score that should facilitate modification of either a single family member of interest or multiple paralogs that serve overlapping roles. Finally, we tabulated features of successful transfections in our laboratory, providing broadly useful guidelines for parasite transfections. Molecular studies aimed at understanding parasite biology or characterising drug and vaccine targets in P. falciparum should be facilitated by this comprehensive database.


Assuntos
Sistemas CRISPR-Cas/genética , Plasmodium falciparum/genética , RNA Guia de Cinetoplastídeos/genética , Transfecção , Simulação por Computador , Edição de Genes , Marcadores Genéticos , Vetores Genéticos , Genoma de Protozoário , Estudo de Associação Genômica Ampla , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...