Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
NPJ Precis Oncol ; 8(1): 168, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090192

RESUMO

In this study, we leveraged machine-learning tools by evaluating expression of genes of pharmacological relevance to standard-AML chemotherapy (ara-C/daunorubicin/etoposide) in a discovery-cohort of pediatric AML patients (N = 163; NCT00136084 ) and defined a 5-gene-drug resistance score (ADE-RS5) that was predictive of outcome (high MRD1 positivity p = 0.013; lower EFS p < 0.0001 and OS p < 0.0001). ADE-RS5 was integrated with a previously defined leukemic-stemness signature (pLSC6) to classify patients into four groups. ADE-RS5, pLSC6 and integrated-score was evaluated for association with outcome in one of the largest assembly of ~3600 AML patients from 10 independent cohorts (1861 pediatric and 1773 adult AML). Patients with high ADE-RS5 had poor outcome in validation cohorts and the previously reported pLSC6 maintained strong significant association in all validation cohorts. For pLSC6/ADE-RS5-integrated-score analysis, using Group-1 (low-scores for ADE-RS5 and pLSC6) as reference, Group-4 (high-scores for ADE-RS5 and pLSC6) showed worst outcome (EFS: p < 0.0001 and OS: p < 0.0001). Groups-2/3 (one high and one low-score) showed intermediate outcome (p < 0.001). Integrated score groups remained an independent predictor of outcome in multivariable-analysis after adjusting for established prognostic factors (EFS: Group 2 vs. 1, HR = 4.68, p < 0.001, Group 3 vs. 1, HR = 3.22, p = 0.01, and Group 4 vs. 1, HR = 7.26, p < 0.001). These results highlight the significant prognostic value of transcriptomics-based scores capturing disease aggressiveness through pLSC6 and drug resistance via ADE-RS5. The pLSC6 stemness score is a significant predictor of outcome and associates with high-risk group features, the ADE-RS5 drug resistance score adds further value, reflecting the clinical utility of simultaneous testing of both for optimizing treatment strategies.

2.
Clin Cancer Res ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078289

RESUMO

PURPOSE: Cytarabine (also known as ara-C) has been the backbone of acute myeloid leukemia (AML) chemotherapy for over five decades. Recent pharmacogenomics-based 10-SNP ara-C score (ACS10) showed low ACS10 (£0) to be associated with poor outcome in AML patients treated with standard chemotherapy. Here, we evaluated ACS10 score in the context of three different induction 1 regimens in pediatric AML patients. EXPERIMENTAL DESIGN: ACS10 score groups (low,£0 or high,>0) were evaluated for association with event-free survival (EFS) and overall survival (OS) by three randomized treatment arms in patients treated on the AML02 (NCT00136084) and AML08 (NCT00703820) clinical trials: AML02 low-dose cytarabine (LDAC arm, n=91), AML02+AML08 high-dose cytarabine (HDAC arm, n=194) and AML08 clofarabine+ cytarabine (Clo/Ara-C arm, n=105) induction 1 regimens. RESULTS: Within the low-ACS10 score (£0) group, significantly improved EFS and OS was observed among patients treated with Clo/Ara-C as compared to LDAC (EFS, HR=0.45, 95% CI, 0.23-0.88, p=0.020; OS, HR=0.44, 95% CI, 0.19-0.99, p=0.048). In contrast, within the high-ACS10 score group (score >0) augmentation with Clo/Ara-C was not favorable as compared to LDAC (Clo/Ara-C vs. LDAC, EFS, HR=1.95, 95% CI: 1.05-3.63, p=0.035; OS HR=2.17, 95%CI: 1.05-4.49; p=0.037). Personalization models predicted 9% improvement in outcome in ACS10 score-based tailored induction (Clo/Ara-C for low and LDAC for high-ACS10 groups) as compared to non-personalized approaches (p<0.002). CONCLUSIONS: Our findings suggest that tailoring induction regimens using ACS10 scores can significantly improve outcome in patients with AML. Given the SNPs are germline, preemptive genotyping can accelerate matching the most effective remission induction regimen.

3.
JAMA Netw Open ; 7(5): e2411726, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38753328

RESUMO

Importance: Disparities in outcomes exist between Black and White patients with acute myeloid leukemia (AML), with Black patients experiencing poorer prognosis compared with their White counterparts. Objective: To assess whether varying intensity of induction therapy to treat pediatric AML is associated with reduced disparities in treatment outcome by race. Design, Setting, and Participants: A comparative effectiveness analysis was conducted of 86 Black and 359 White patients with newly diagnosed AML who were enrolled in the AML02 trial from 2002 to 2008 or the AML08 trial from 2008 to 2017. Statistical analysis was conducted from July 2023 through January 2024. Interventions: Patients in AML02 were randomly assigned to receive standard low-dose cytarabine-based induction therapy or augmented high-dose cytarabine-based induction therapy, whereas patients in AML08 received high-dose cytarabine-based therapy. Main Outcomes and Measures: Cytarabine pharmacogenomic 10-single-nucleotide variant (ACS10) scores were evaluated for association with outcome according to race and treatment arm. Results: This analysis included 86 Black patients (mean [SD] age, 8.8 [6.5] years; 54 boys [62.8%]; mean [SD] leukocyte count, 52 600 [74 000] cells/µL) and 359 White patients (mean [SD] age, 9.1 [6.2] years; 189 boys [52.6%]; mean [SD] leukocyte count, 54 500 [91 800] cells/µL); 70 individuals with other or unknown racial and ethnic backgrounds were not included. Among all patients without core binding factor AML who received standard induction therapy, Black patients had significantly worse outcomes compared with White patients (5-year event-free survival rate, 25% [95% CI, 9%-67%] compared with 56% [95% CI, 46%-70%]; P = .03). By contrast, among all patients who received augmented induction therapy, there were no differences in outcome according to race (5-year event-free survival rate, Black patients, 50% [95% CI, 38%-67%]; White patients, 48% [95% CI, 42%-55%]; P = .78). Among patients who received standard induction therapy, those with low ACS10 scores had a significantly worse 5-year event-free survival rate compared with those with high scores (42.4% [95% CI, 25.6%-59.3%] and 70.0% [95% CI, 56.6%-83.1%]; P = .004); however, among patients who received augmented induction therapy, there were no differences in 5-year event-free survival rates according to ACS10 score (low score, 60.6% [95% CI, 50.9%-70.2%] and high score, 54.8% [95% CI, 47.1%-62.5%]; P = .43). Conclusions and Relevance: In this comparative effectiveness study of pediatric patients with AML treated in 2 consecutive clinical trials, Black patients had worse outcomes compared with White patients after treatment with standard induction therapy, but this disparity was eliminated by treatment with augmented induction therapy. When accounting for ACS10 scores, no outcome disparities were seen between Black and White patients. Our results suggest that using pharmacogenomics parameters to tailor induction regimens for both Black and White patients may narrow the racial disparity gap in patients with AML.


Assuntos
Citarabina , Leucemia Mieloide Aguda , População Branca , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Criança , Feminino , Citarabina/uso terapêutico , Resultado do Tratamento , Pré-Escolar , População Branca/estatística & dados numéricos , População Branca/genética , Farmacogenética , Adolescente , Antimetabólitos Antineoplásicos/uso terapêutico , Negro ou Afro-Americano/estatística & dados numéricos , Quimioterapia de Indução/métodos
4.
Res Sq ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585847

RESUMO

Anaplastic large cell lymphoma (ALCL) is a mature T-cell lymphoma that accounts for for 10-15% of childhood lymphomas. Despite the observation that more than 90% of pediatric cases harbor the anaplastic lymphoma kinase (ALK) rearrangement resulting in aberrant ALK kinase expression, there is significant clinical, morphologic, and biological heterogeneity. To gain insights into the genomic aberrations and molecular heterogeneity within ALK-positive ALCL(ALK+ ALCL), we analyzed 46 pediatric ALK+ ALCLs by whole-exome sequencing, RNA-sequencing, and DNA methylation profiling. Whole-exome sequencing found on average 25 SNV/Indel events per sample with recurring genetic events in regulators of DNA damage (TP53, MDM4), transcription (JUNB), and epigenetic regulators (TET1, KMT2B, KMT2A, KMT2C, KMT2E). Gene expression and methylation profiling consistently subclassified ALK+ ALCLs into two groups characterized by diferential ALK expression levels. The ALK-low group showed enrichment of pathways associated with immune response, cytokine signaling, and a hypermethylated predominant pattern compared to the ALK- high group, which had more frequent copy number changes, and was enriched with pathways associated with cell growth, proliferation, metabolic pathways, and. Taken together, these findings suggest that there is molecular heterogeneity within pediatric ALK+ALCL, predicting distinct biological mechanisms that may provide novel insights into disease pathogenesis and represent prognostic markers.

5.
Genes (Basel) ; 15(3)2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540403

RESUMO

The false discovery rate (FDR) is a widely used metric of statistical significance for genomic data analyses that involve multiple hypothesis testing. Power and sample size considerations are important in planning studies that perform these types of genomic data analyses. Here, we propose a three-rectangle approximation of a p-value histogram to derive a formula to compute the statistical power and sample size for analyses that involve the FDR. We also introduce the R package FDRsamplesize2, which incorporates these and other power calculation formulas to compute power for a broad variety of studies not covered by other FDR power calculation software. A few illustrative examples are provided. The FDRsamplesize2 package is available on CRAN.


Assuntos
Algoritmos , Software , Tamanho da Amostra , Projetos de Pesquisa , Genômica
6.
Nat Genet ; 56(2): 281-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212634

RESUMO

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Genômica , Fatores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
7.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961674

RESUMO

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

8.
Res Sq ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398194

RESUMO

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 895 pAML into 23 molecular categories that are mutually distinct from one another, including new entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3, or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a prognostic framework for pAML based on molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.

9.
Blood ; 142(8): 711-723, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37216686

RESUMO

Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.


Assuntos
Cromossomos Humanos Par 21 , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Cromossomos Humanos Par 21/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Aberrações Cromossômicas , Citogenética , Genômica , Fator 1 de Modelagem da Cromatina/genética
10.
Blood Adv ; 7(14): 3651-3657, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058475

RESUMO

The prognostic significance of bone marrow minimal residual disease (MRD) in pediatric patients with acute myeloid leukemia (AML) is well characterized, but the impact of blood MRD is not known. We, therefore, used flow cytometric assessment of leukemia-specific immunophenotypes to measure levels of MRD in both the blood and bone marrow of patients treated in the AML08 (NCT00703820) clinical trial. Blood samples were obtained on days 8 and 22 of therapy, whereas bone marrow samples were obtained on day 22. Among patients who tested as having MRD-negative bone marrow on day 22, neither day-8 nor day-22 blood MRD was significantly associated with the outcome. However, day-8 blood MRD was highly predictive of the outcome among patients who tested as having MRD-positive bone marrow on day 22. Although the measurement of blood MRD on day 8 cannot be used to identify patients who have day-22 MRD-negative bone marrow who are likely to relapse, our findings suggest that day-8 blood MRD results can identify patients with MRD-positive bone marrow who have a dismal prognosis and may be candidates for the early use of experimental therapy.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Criança , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Neoplasia Residual , Prognóstico , Recidiva
11.
Methods Mol Biol ; 2629: 349-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36929085

RESUMO

Pediatric cancer multi-omics is a uniquely rewarding and challenging domain of biomedical research. Public generosity bestows an abundance of resources for the study of extremely rare diseases; this unique dynamic creates a research environment in which problems with high-dimension and low sample size are commonplace. Here, we present a few statistical methods that we have developed for our research setting and believe will prove valuable in other biomedical research settings as well. The genomic random interval (GRIN) method evaluates the loci and frequency of genomic abnormalities in the DNA of tumors to identify genes that may drive the development of malignancies. The association of lesions with expression (ALEX) method evaluates the impact of genomic abnormalities on the RNA transcription of nearby genes to inform the formulation of biological hypotheses on molecular mechanisms. The projection onto the most interesting statistical evidence (PROMISE) method identifies omic features that consistently associate with better prognosis or consistently associate with worse prognosis across multiple measures of clinical outcome. We have shown that these methods are statistically robust and powerful in the statistical bioinformatic literature and successfully used these methods to make fundamental biological discoveries that have formed the scientific rationale for ongoing clinical trials. We describe these methods and illustrate their application on a publicly available T-cell acute lymphoblastic leukemia (T-ALL) data set. A companion github site ( https://github.com/stjude/TALL-example ) provides the R code and data necessary to recapitulate the example data analyses of this chapter.


Assuntos
Multiômica , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Criança , Humanos , Genômica/métodos , Biologia Computacional , Genoma
12.
Cancer ; 129(12): 1873-1884, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943896

RESUMO

BACKGROUND: Hyperleukocytosis in patients with acute myeloid leukemia (AML) has been associated with worse outcomes. For cytoreduction, leukapheresis has been used but its clinical utility is unknown, and low-dose cytarabine (LD-cytarabine) is used as an alternative method. METHODS: Children with newly diagnosed AML treated between 1997 and 2017 in institutional protocols were studied. Hyperleukocytosis was defined as a leukocyte count of ≥100 × 109 /L at diagnosis. Clinical characteristics, early complications, survival data, and effects of cytoreductive methods were reviewed. Among 324 children with newly diagnosed AML, 49 (15.1%) presented with hyperleukocytosis. Initial management of hyperleukocytosis included leukapheresis or exchange transfusion (n = 16, considered as one group), LD-cytarabine (n = 18), hydroxyurea (n = 1), and no leukoreduction (n = 14). RESULTS: Compared with patients who received leukapheresis, the percentage decrease in leukocyte counts following intervention was greater among those who received LD-cytarabine (48% vs. 75%; p = .02), with longer median time from diagnosis to initiation of protocol therapy (28.1 vs. 95.2 hours; p < .001). The incidence of infection was higher in patients (38%) who had leukapheresis than those who receive LD-cytarabine (0%) or leukoreduction with protocol therapy (14%) (p = .008). No differences were noted in the outcomes among the intervention groups. Although patients with hyperleukocytosis had higher incidences of pulmonary and metabolic complications than did those without, no early deaths occurred, and the complete remission, event-free survival, overall survival rates, and outcomes of both groups were similar. CONCLUSION: LD-cytarabine treatment appears to be a safe and effective means of cytoreduction for children with AML and hyperleukocytosis.


Assuntos
Procedimentos Cirúrgicos de Citorredução , Leucemia Mieloide Aguda , Humanos , Criança , Procedimentos Cirúrgicos de Citorredução/efeitos adversos , Leucocitose/terapia , Leucocitose/epidemiologia , Leucocitose/etiologia , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/diagnóstico , Contagem de Leucócitos , Leucaférese/métodos , Citarabina
13.
bioRxiv ; 2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-36993205

RESUMO

Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.

15.
Blood Adv ; 7(11): 2538-2550, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36689724

RESUMO

Cytarabine arabinoside (Ara-C) has been the cornerstone of acute myeloid leukemia (AML) chemotherapy for decades. After cellular uptake, it is phosphorylated into its active triphosphate form (Ara-CTP), which primarily exerts its cytotoxic effects by inhibiting DNA synthesis in proliferating cells. Interpatient variation in the enzymes involved in the Ara-C metabolic pathway has been shown to affect intracellular abundance of Ara-CTP and, thus, its therapeutic benefit. Recently, SAMHD1 (SAM and HD domain-containing deoxynucleoside triphosphate triphosphohydrolase 1) has emerged to play a role in Ara-CTP inactivation, development of drug resistance, and, consequently, clinical response in AML. Despite this, the impact of genetic variations in SAMHD1 on outcome in AML has not been investigated in depth. In this study, we evaluated 25 single nucleotide polymorphisms (SNPs) within the SAMHD1 gene for association with clinical outcome in 400 pediatric patients with newly diagnosed AML from 2 clinical trials, AML02 and AML08. Three SNPs, rs1291128, rs1291141, and rs7265241 located in the 3' region of SAMHD1 were significantly associated with at least 1 clinical outcome: minimal residual disease after induction I, event-free survival (EFS), or overall survival (OS) in the 2 cohorts. In an independent cohort of patients from the COG-AAML1031 trial (n = 854), rs7265241 A>G remained significantly associated with EFS and OS. In multivariable analysis, all the SNPs remained independent predictors of clinical outcome. These results highlight the relevance of the SAMHD1 pharmacogenomics in context of response to Ara-C in AML and warrants the need for further validation in expanded patient cohorts.


Assuntos
Leucemia Mieloide Aguda , Proteína 1 com Domínio SAM e Domínio HD , Criança , Humanos , Arabinofuranosilcitosina Trifosfato/metabolismo , Arabinofuranosilcitosina Trifosfato/uso terapêutico , Citarabina/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Proteína 1 com Domínio SAM e Domínio HD/genética
16.
Nat Cancer ; 4(1): 27-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581735

RESUMO

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.


Assuntos
Leucemia Mieloide Aguda , Adulto , Humanos , Criança , Leucemia Mieloide Aguda/genética , Medula Óssea/patologia , Linfócitos T Reguladores/patologia , Inflamação/patologia , Medição de Risco , Microambiente Tumoral
17.
Blood Adv ; 7(9): 1769-1783, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36111891

RESUMO

Etoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting. We performed a genome-wide CRISPR/Cas9 synthetic-lethal screening to identify functional modulators of etoposide response in leukemic cell line and integrated results from CRISPR-screen with gene expression and clinical outcomes in pediatric patients with AML treated with etoposide-containing regimen. Our results confirmed the involvement of well-characterized genes, including TOP2A and ABCC1, as well as identified novel genes such as RAD54L2, PRKDC, and ZNF451 that have potential to be novel drug targets. This study demonstrates the ability for leveraging CRISPR/Cas9 screening in conjunction with clinically relevant endpoints to make meaningful discoveries for the identification of prognostic biomarkers and novel therapeutic targets to overcome treatment resistance.


Assuntos
Sistemas CRISPR-Cas , Leucemia Mieloide Aguda , Humanos , Criança , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linhagem Celular , DNA Helicases/genética
18.
Front Bioinform ; 2: 897238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304323

RESUMO

Biomolecular condensates are cellular organelles formed through liquid-liquid phase separation (LLPS) that play critical roles in cellular functions including signaling, transcription, translation, and stress response. Importantly, condensate misregulation is associated with human diseases, including neurodegeneration and cancer among others. When condensate-forming biomolecules are fluorescently-labeled and examined with fluorescence microscopy they appear as illuminated foci, or puncta, in cells. Puncta features such as number, volume, shape, location, and concentration of biomolecular species within them are influenced by the thermodynamics of biomolecular interactions that underlie LLPS. Quantification of puncta features enables evaluation of the thermodynamic driving force for LLPS and facilitates quantitative comparisons of puncta formed under different cellular conditions or by different biomolecules. Our work on nucleoporin 98 (NUP98) fusion oncoproteins (FOs) associated with pediatric leukemia inspired us to develop an objective and reliable computational approach for such analyses. The NUP98-HOXA9 FO forms hundreds of punctate transcriptional condensates in cells, leading to hematopoietic cell transformation and leukemogenesis. To quantify the features of these puncta and derive the associated thermodynamic parameters, we developed a live-cell fluorescence microscopy image processing pipeline based on existing methodologies and open-source tools. The pipeline quantifies the numbers and volumes of puncta and fluorescence intensities of the fluorescently-labeled biomolecule(s) within them and generates reports of their features for hundreds of cells. Using a standard curve of fluorescence intensity versus protein concentration, the pipeline determines the apparent molar concentration of fluorescently-labeled biomolecules within and outside of puncta and calculates the partition coefficient (Kp) and Gibbs free energy of transfer (ΔGTr), which quantify the favorability of a labeled biomolecule partitioning into puncta. In addition, we provide a library of R functions for statistical analysis of the extracted measurements for certain experimental designs. The source code, analysis notebooks, and test data for the Punctatools pipeline are available on GitHub: https://github.com/stjude/punctatools. Here, we provide a protocol for applying our Punctatools pipeline to extract puncta features from fluorescence microscopy images of cells.

19.
Nat Genet ; 54(9): 1376-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050548

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Aberrações Cromossômicas , Exoma/genética , Genômica , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
20.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074606

RESUMO

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-ß as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Camundongos , Animais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Hematopoese/genética , Mutação em Linhagem Germinativa , Fatores de Transcrição/genética , Deleção Cromossômica , Neoplasias/genética , Síndrome , Transtornos da Insuficiência da Medula Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...