Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 34(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966003

RESUMO

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.

2.
Angew Chem Int Ed Engl ; : e202402078, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753586

RESUMO

Globally, traumatic injury is a leading cause of suffering and death. The ability to curtail damage and ensure survival after major injury requires a time-sensitive response balancing organ perfusion, blood loss, and portability, underscoring the need for novel therapies for the prehospital environment. Currently, there are few options available for damage control resuscitation (DCR) of trauma victims. We hypothesize that synthetic polymers, which are tunable, portable, and stable under austere conditions, can be developed as effective injectable therapies for trauma medicine. In this work, we design injectable polymers for use as low volume resuscitants (LVRs). Using RAFT polymerization, we evaluate the effect of polymer size, architecture, and chemical composition upon both blood coagulation and resuscitation in a rat hemorrhagic shock model. Our therapy is evaluated against a clinically used colloid resuscitant, Hextend. We demonstrate that a radiant star poly(glycerol monomethacrylate) polymer did not interfere with coagulation while successfully correcting metabolic deficit and resuscitating animals from hemorrhagic shock to the desired mean arterial pressure range for DCR - correcting a 60 % total blood volume (TBV) loss when given at only 10 % TBV. This highly portable and non-coagulopathic resuscitant has profound potential for application in trauma medicine.

3.
Langmuir ; 39(45): 15878-15888, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910774

RESUMO

Thin metal particles with two-dimensional (2D) symmetry are attractive for multiple applications but are difficult to synthesize in a reproducible manner. Although molecules that selectively adsorb to facets have been used to control nanoparticle shape, there is still limited research into the temporal control of growth processes to control these structural outcomes. Moreover, much of the current research into the growth of thin 2D particles lacks mechanistic details. In this work, we study why the substitution of isoleucine for methionine in a gold-binding peptide (Z2, RMRMKMK) results in an increase in gold nanoparticle anisotropy. Nanoplatelet growth in the presence of Z2M246I (RIRIKIK) is characterized using in situ small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. Fitting time-resolved SAXS profiles reveal that 10 nm-thick particles with 2D symmetry are formed within the first few minutes of the reaction. Next, through a combination of electron diffraction and molecular dynamics simulations, we show that substitution of methionine for isoleucine increases the (111) facet selectivity in Z2M246I, and we conclude that this is key to the growth of nanoplatelets. However, the potential application of nanoplatelets formed using Z2M246I is limited due to their uncontrolled lateral growth, aggregation, and rapid sedimentation. Therefore, we use a liquid-handling robot to perform temporally controlled synthesis and dynamic intervention through the addition of Z2 to nanoplatelets grown in the presence of Z2M246I at different times. UV-vis spectroscopy, dynamic light scattering, and electron microscopy show that dynamic intervention results in control over the mean size and stability of plate-like particles. Finally, we use in situ UV-vis spectroscopy to study plate-like particle growth at different times of intervention. Our results demonstrate that both the selectivity and magnitude of binding free energy toward lattices are important for controlling nanoparticle growth pathways.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Anisotropia , Nanopartículas Metálicas/química , Ouro/química , Espalhamento a Baixo Ângulo , Isoleucina , Difração de Raios X , Nanoestruturas/química , Metionina
4.
J Phys Chem Lett ; 14(43): 9732-9739, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37882440

RESUMO

Achieving predictable biomimetic crystallization using sequence-defined synthetic molecules in mild conditions represents a long-standing challenge in materials synthesis. Herein we report a peptoid-based approach for biomimetic control over the formation of nanostructured ZnO materials in ambient aqueous conditions. A series of two-dimensional (2D) ZnO nanomaterials have been successfully obtained using amphiphilic peptoids with different numbers, ratios, and patterns of various hydrophilic and hydrophobic side chains. By investigating the relationship between peptoid hydrophobicity and the thickness of the resultant ZnO nanomaterials, we found the critical role of peptoid hydrophobicity in the peptoid-controlled ZnO formation. Our results suggest that tuning the hydrophobicity of peptoids can be used to moderate peptoid-ZnO surface interactions, thus controlling the formation of ultrathin (<2.5 nm) 2D ZnO nanomaterials. The peptoid-controlled formation of ZnO nanomaterials was further investigated using ultrasmall-angle X-ray scattering (USAXS). Our work suggests a new approach to synthesizing 2D metal oxide nanomaterials using sequence-defined synthetic molecules.

5.
Angew Chem Int Ed Engl ; 62(28): e202303770, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145989

RESUMO

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q3 8 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q3 8 are stabilized by hydrogen bonds with surrounding H2 O and tetramethylammonium ions (TMA+ ). When Q3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x (Q3 8 )⋅n H2 O](x-8) clathrate complexes into step edges on the crystals.

6.
Biomacromolecules ; 24(6): 2618-2632, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37141445

RESUMO

Peptoids (N-substituted glycines) are a group of highly controllable peptidomimetic polymers. Amphiphilic diblock peptoids have been engineered to assemble crystalline nanospheres, nanofibrils, nanosheets, and nanotubes with biochemical, biomedical, and bioengineering applications. The mechanical properties of peptoid nanoaggregates and their relationship to the emergent self-assembled morphologies have been relatively unexplored and are critical for the rational design of peptoid nanomaterials. In this work, we consider a family of amphiphilic diblock peptoids consisting of a prototypical tube-former (Nbrpm6Nc6, a NH2-capped hydrophobic block of six N-((4-bromophenyl)methyl)glycine residues conjugated to a polar NH3(CH2)5CO tail), a prototypical sheet-former (Nbrpe6Nc6, where the hydrophobic block comprises six N-((4-bromophenyl)ethyl)glycine residues), and an intermediate sequence that forms mixed structures ((NbrpeNbrpm)3Nc6). We combine all-atom molecular dynamics simulations and atomic force microscopy to determine the mechanical properties of the self-assembled 2D crystalline nanosheets and relate these properties to the observed self-assembled morphologies. We find good agreement between our computational predictions and experimental measurements of Young's modulus of crystalline nanosheets. A computational analysis of the bending modulus along the two axes of the planar crystalline nanosheets reveals bending to be more favorable along the axis in which the peptoids stack by interdigitation of the side chains compared to that in which they form columnar crystals with π-stacked side chains. We construct molecular models of nanotubes of the Nbrpm6Nc6 tube-forming peptoid and predict a stability optimum in good agreement with experimental measurements. A theoretical model of nanotube stability suggests that this optimum is a free energy minimum corresponding to a "Goldilocks" tube radius at which capillary wave fluctuations in the tube wall are minimized.


Assuntos
Nanotubos , Peptoides , Peptoides/química , Nanotubos/química , Glicinas N-Substituídas , Simulação de Dinâmica Molecular , Glicina
7.
Adv Mater ; 35(11): e2207673, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36594431

RESUMO

High energy photons (λ < 400 nm) are frequently used to initiate free radical polymerizations to form polymer networks, but are only effective for transparent objects. This phenomenon poses a major challenge to additive manufacturing of particle-reinforced composite networks since deep light penetration of short-wavelength photons limits the homogeneous modification of physicochemical and mechanical properties. Herein, the unconventional, yet versatile, multiexciton process of triplet-triplet annihilation upconversion (TTA-UC) is employed for curing opaque hydrogel composites created by direct-ink-write (DIW) 3D printing. TTA-UC converts low energy red light (λmax  = 660 nm) for deep penetration into higher-energy blue light to initiate free radical polymerizations within opaque objects. As proof-of-principle, hydrogels containing up to 15 wt.% TiO2 filler particles and doped with TTA-UC chromophores are readily cured with red light, while composites without the chromophores and TiO2 loadings as little as 1-2 wt.% remain uncured. Importantly, this method has wide potential to modify the chemical and mechanical properties of complex DIW 3D-printed composite polymer networks.

8.
Angew Chem Int Ed Engl ; 62(2): e202215733, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36395245

RESUMO

The sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron-transfer processes (i.e., mechanoredox catalysis), an energy-conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition-fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution-state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.

9.
J Acoust Soc Am ; 152(4): 2493, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36319242

RESUMO

Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.


Assuntos
Fluorocarbonos , Volatilização , Microbolhas , Meios de Contraste , Acústica , Fosfolipídeos
10.
Biomacromolecules ; 23(3): 992-1008, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020390

RESUMO

Peptoids (N-substituted glycines) are a class of tailorable synthetic peptidomic polymers. Amphiphilic diblock peptoids have been engineered to assemble 2D crystalline lattices with applications in catalysis and molecular separations. Assembly is induced in an organic solvent/water mixture by evaporating the organic phase, but the assembly pathways remain uncharacterized. We conduct all-atom molecular dynamics simulations of Nbrpe6Nc6 as a prototypical amphiphilic diblock peptoid comprising an NH2-capped block of six hydrophobic N-((4-bromophenyl)ethyl)glycine residues conjugated to a polar NH3(CH2)5CO tail. We identify a thermodynamically controlled assembly mechanism by which monomers assemble into disordered aggregates that self-order into 1D chiral helical rods then 2D achiral crystalline sheets. We support our computational predictions with experimental observations of 1D rods using small-angle X-ray scattering, circular dichroism, and atomic force microscopy and 2D crystalline sheets using X-ray diffraction and atomic force microscopy. This work establishes a new understanding of hierarchical peptoid assembly and principles for the design of peptoid-based nanomaterials.


Assuntos
Nanoestruturas , Peptoides , Microscopia de Força Atômica , Glicinas N-Substituídas , Nanoestruturas/química , Peptoides/química , Polímeros , Difração de Raios X
11.
Langmuir ; 37(33): 10126-10134, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369796

RESUMO

We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and ß-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and ß-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.


Assuntos
Ciclodextrinas , Polímeros Responsivos a Estímulos , beta-Ciclodextrinas , Espectroscopia de Ressonância Magnética , Polímeros
12.
Disaster Med Public Health Prep ; 17: e15, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114537

RESUMO

OBJECTIVES: To determine if solar-powered battery systems could be successfully used for electricity-dependent medical devices by families during a power outage. METHODS: We assessed the use of and satisfaction with solar-powered battery systems distributed to 15 families following Hurricane Maria in rural Puerto Rico. Interviews were conducted in July 2018, 3 mo following distribution of the systems. RESULTS: The solar-powered battery systems powered refrigeration for medications and prescribed diets, asthma therapy, inflatable mattresses to prevent bedsores, and continuous positive airway pressure machines for sleep apnea. Despite some system problems, such as inadequate power, defective cables, and blown fuses, families successfully dealt with these issues with some outside help. Almost all families were pleased with the systems and a majority would recommend solar-powered battery systems to a neighbor. CONCLUSIONS: Families accepted and successfully used solar-powered battery systems to power medical devices. Solar-powered battery systems should be considered as alternatives to generators for power outages after hurricanes and other disasters. Additional research and analysis are needed to inform policy on increasing access to such systems.

13.
ACS Polym Au ; 1(3): 134-152, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855657

RESUMO

Conjugated polymers (CPs) enable a wide range of lightweight, lower cost, and flexible organic electronic devices, but a thorough understanding of relationships between molecular structure and dynamics and electronic performance is critical for improved device efficiencies and for new technologies. Molecular dynamics (MD) simulations offer in silico insight into this relationship, but their accuracy relies on the approach used to develop the model's parameters or force field (FF). In this Perspective, we first review current FFs for CPs and find that most of the models implement an arduous reparameterization of inter-ring torsion potentials and partial charges of classical FFs. However, there are few FFs outside of simple CP molecules, e.g., polythiophenes, that have been developed over the last two decades. There is also limited reparameterization of other parameters, such as nonbonded Lennard-Jones interactions, which we find to be directly influenced by conjugation in these materials. We further provide a discussion on experimental validation of MD FFs, with emphasis on neutron and X-ray scattering. We define multiple ways in which various scattering methods can be directly compared to results of MD simulations, providing a powerful experimental validation metric of local structure and dynamics at relevant length and time scales to charge transport mechanisms in CPs. Finally, we offer a perspective on the use of neutron scattering with machine learning to enable high-throughput parametrization of accurate and experimentally validated CP FFs enabled not only by the ongoing advancements in computational chemistry, data science, and high-performance computing but also using oligomers as proxies for longer polymer chains during FF development.

14.
Photoacoustics ; 20: 100202, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32817821

RESUMO

Sono-photoacoustic (SPA) activation lowers the threshold of phase-change contrast agents by timing a laser shot to coincide with the arrival of an acoustic wave at a region of interest. The combination of photothermal heating from optical absorption and negative pressure from the acoustic wave greatly reduces the droplet's combined vaporization threshold compared to using laser energy or acoustic energy alone. In previous studies, SPA imaging used a broadly illuminated optical pulse combined with plane wave acoustic pulses transmitted from a linear ultrasound array. Acoustic plane waves cover a wide lateral field of view, enabling direct visualization of the contrast agent distribution. In contrast, we demonstrate here that localized SPA activation is possible using electronically steered/focused ultrasound pulses. The focused SPA activation region is defined axially by the number of cycles in the acoustic pulse and laterally by the acoustic beam width. By reducing the spot size and enabling rapid electronic steering, complex activation patterns are possible, which may be particularly useful in therapeutic applications.

15.
Soft Matter ; 16(15): 3762-3768, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239011

RESUMO

Cell therapy for spinal cord injuries offers the possibility of replacing lost cells after trauma to the central nervous system (CNS). In preclinical studies, synthetic hydrogels are often co-delivered to the injury site to support survival and integration of the transplanted cells. These hydrogels ideally mimic the mechanical and biochemical features of a healthy CNS extracellular matrix while also providing the possibility of localized drug delivery to promote healing. In this work, we synthesize peptide-functionalized polymers that contain both a peptide sequence for incorporation into self-assembled peptide hydrogels along with bioactive peptides that inhibit scar formation. We demonstrate that peptide hydrogels formulated with the peptide-functionalized polymers possess similar mechanical properties (soft and shear-thinning) as peptide-only hydrogels. Small angle neutron scattering analysis reveals that polymer-containing hydrogels possess larger inhomogeneous domains but small-scale features such as mesh size remain the same as peptide-only hydrogels. We further confirm that the integrated hydrogels containing bioactive peptides exhibit thrombin inhibition activity, which has previously shown to reduce scar formation in vivo. Finally, while the survival of encapsulated cells was poor, cells cultured on the hydrogels exhibited good viability. Overall, the described composite hydrogels formed from self-assembling peptides and peptide-modified polymers are promising, user-friendly materials for CNS applications in regeneration.


Assuntos
Células Imobilizadas/metabolismo , Hidrogéis/química , Peptídeos/química , Células-Tronco/metabolismo , Trombina/química , Animais , Células Imobilizadas/citologia , Humanos , Camundongos , Células-Tronco/citologia
16.
Langmuir ; 35(50): 16583-16592, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31750665

RESUMO

The sonochemical synthesis of CdSe quantum dots (QDs) in a single-liquid bulk phase and in an emulsion-based system is presented. Reactions utilized cadmium oleate and trioctylphosphine selenide precursors and were monitored as a function of sonication time under controlled temperature conditions to isolate the effects of cavitation from those of bulk temperature changes. QD synthesis was found to be slow in the single-phase liquid system (i.e., 1-octadecene) but greatly accelerated in the dispersed system (i.e., emulsions of 1-octadecene in ethylene glycol). It is hypothesized that the emulsion system increases the cavitation efficiency while also delivering acoustic energy in closer proximity to the precursor molecules. The capacity of CdSe production in the emulsion system was found to be 3.8 g/(L h), which is comparable to the typical hot-injection synthesis of CdSe QDs and can likely be further optimized. While the single-phase solvent system was found to produce ultrasmall QDs that exhibit broadband white-light emission, the emulsion system was found to produce well-defined magic-size clusters (MSCs) with photoluminescence quantum yield as high as 34%. Differences in synthesis rate and product properties from the emulsion and single-phase systems were probed by X-ray diffraction, electron microscopy, UV-visible (vis) and photoluminescence spectroscopy, and small-angle X-ray scattering (SAXS). Finally, precise temporal control of the QD synthesis was demonstrated via on-off cycling of the ultrasound waves.

17.
Langmuir ; 35(47): 15192-15203, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31689363

RESUMO

Contrast-variation time-resolved small-angle neutron scattering (CV-SANS) was used to examine oil-exchange kinetics between identical mixtures of hydrogenated/deuterated hexadecane emulsion systems. Oil-exchange rates were estimated by transforming recorded scattering profiles to a relaxation function and by fitting to exponential decay models. We find that the oil-exchange process was accelerated when the droplets were stabilized by anionic surfactants even at concentrations well below the surfactant critical micelle concentration. Moreover, the exchange rate was not significantly accelerated when surfactant micelles were present. This suggests that micellar-mediated transport mechanisms do not play the dominant role in these systems. Screening electrostatic repulsion by increasing the ionic strength of the medium also had a negligible effect on oil-exchange kinetics. In contrast, the use of oils with shorter alkane chain lengths (e.g., dodecane), having a higher solubility in water, significantly accelerated rates of oil transport between droplets. Oil-transport rates for hexadecane were also found to increase with temperature and to follow Arrhenius behavior. These results were rationalized as an increase in the droplet-collision frequency due to Brownian motion that results in direct oil transport without irreversible coalescence. Thus, primary mechanisms for oil exchange in insoluble anionic surfactant-stabilized emulsion systems are hypothesized to be through direct emulsion contact, reversible coalescence, and/or direct oil permeation through thin liquid films. CV-SANS is also demonstrated as a powerful technique for the study of transport kinetics in all kinds of emulsion systems.

18.
Langmuir ; 35(47): 15204-15213, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31689364

RESUMO

Ultrasound is one of the most commonly used methods for synthesizing and processing emulsion systems. In this study, the kinetics of acoustically induced emulsion oil exchange was examined using contrast variation time-resolved small-angle neutron scattering (CV-SANS). A custom-built sample environment was used to deliver acoustic forces while simultaneously performing CV-SANS experiments. It was observed that the oil exchange rate was significantly accelerated when sonicating at high acoustic pressures, where violent cavitation events can induce droplet coalescence and breakup. No significant oil exchange occurred at acoustic pressures below the cavitation threshold within the short time scales of the experiments. It was also observed that the oil exchange kinetics was deterred when emulsions were stabilized by surfactants. In addition, oil exchange rates varied nonlinearly with the concentration of surfactant, and exchange was slowest when the emulsions were stabilized by an intermediate concentration. It is hypothesized that emulsion size, electrostatic repulsion, and Gibbs elasticity of the oil-water interface play significant roles in the observed trends. The observed trends in oil exchange rates versus surfactant concentration coincide well with theoretical models for the fluctuation of the elasticity of the interface. Acoustically induced oil exchange was most inefficient when the interfacial elasticity was at its maximum value.

19.
Soft Matter ; 15(25): 5067-5083, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31183486

RESUMO

The molecular morphology and dynamics of conjugated polymers in the bulk solid state play a significant role in determining macroscopic charge transport properties. To understand this relationship, molecular dynamics (MD) simulations and quantum mechanical calculations are used to evaluate local electronic properties. In this work, we investigate the importance of system and simulation parameters, such as force fields and equilibration methods, when simulating amorphous poly(3-hexylthiophene) (P3HT), a model semiconducting polymer. An assessment of MD simulations for five different published P3HT force fields is made by comparing results to experimental wide-angle X-ray scattering (WAXS) and to a broad range of quasi-elastic neutron scattering (QENS) data. Moreover, an in silico analysis of force field parameters reveals that atomic partial charges and torsion potentials along the backbone and side chains have the greatest impact on structure and dynamics related to charge transport mechanisms in P3HT.

20.
Soft Matter ; 15(8): 1799-1812, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30688343

RESUMO

The solution-phase self-assembly of donor-acceptor conjugated polymer (DACP) poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl))thieno[3,2b]thiophene] (DPPDTT), is demonstrated and investigated from binary solvent mixtures. It is found that the polarity of a miscible 'poor' solvent (e.g. methanol, dimethyl sulfoxide), which is added to a stable polymer solution in chloroform (i.e. 'good' solvent), strongly affects the resulting nanostructure. Nanoribbons are formed by the addition of certain polar (e.g. methanol) 'poor' solvents to the mixture, while amorphous aggregates are formed upon addition of non-polar 'poor' solvent, such as n-hexane. Atomic force microscopy (AFM), scanning transmission electron microscopy (sTEM) and small angle neutron scattering (SANS) are used to characterize the shape and size of the nanostructures. Experiments show complex self-assembly in solution occurs for DACPs when compared to conjugated homopolymers. SANS results also provide quantitative analysis of DACP conformations in solution before self-assembly occurs. The addition of different polar 'poor' solvents could also alter the size of the assembled nanostructures, as well as the fraction of polymers that self-assemble. The surface orientation and the crystal structure of the nanostructures is also probed by grazing-incidence wide-angle X-ray scattering (GIWAXS). Organic field effect transistors (OFETs) are used to characterize charge transport properties for nanoribbons where enhancement of the average hole mobility is observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...