Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(18): 5603-5609, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669477

RESUMO

During liver fibrosis, recurrent hepatic injuries lead to the accumulation of collagen and other extracellular matrix components in the interstitial space, ultimately disrupting liver functions. Early stages of liver fibrosis may be reversible, but opportunities for diagnosis at these stages are currently limited. Here, we show that the alterations of the interstitial space associated with fibrosis can be probed by tracking individual fluorescent single-walled carbon nanotubes (SWCNTs) diffusing in that space. In a mouse model of early liver fibrosis, we find that nanotubes generally explore elongated areas, whose lengths decrease as the disease progresses, even in regions where histopathological examination does not reveal fibrosis yet. Furthermore, this decrease in nanotube mobility is a purely geometrical effect as the instantaneous nanotube diffusivity stays unmodified. This work establishes the promise of SWCNTs both for diagnosing liver fibrosis at an early stage and for more in-depth studies of the biophysical effects of the disease.


Assuntos
Cirrose Hepática , Nanotubos de Carbono , Nanotubos de Carbono/química , Animais , Cirrose Hepática/patologia , Camundongos , Fígado/patologia , Matriz Extracelular/metabolismo , Corantes Fluorescentes/química , Modelos Animais de Doenças , Difusão
2.
Cell Rep ; 42(8): 112866, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37605533

RESUMO

Recent evidence supporting that adipose tissue (AT)-derived extracellular vesicles (EVs) carry an important part of the AT secretome led us to characterize the EV-adipokine profile. In addition to evidencing a high AT-derived EV secretion ability that is further increased by obesity, we identify enrichment of oligomeric forms of adiponectin in small EVs (sEVs). This adipokine is mainly distributed at the EV external surface as a result of nonspecific adsorption of soluble adiponectin. EVs also constitute stable conveyors of adiponectin in the blood circulation. Adiponectin-enriched sEVs display in vitro insulin-sensitizing effects by binding to regular adiponectin receptors. Adoptive transfer of adiponectin-enriched sEVs in high-fat-diet-fed mice prevents animals from gaining weight and ameliorated insulin resistance and tissue inflammation, with major effects observed in the AT and liver. Our results therefore provide information regarding adiponectin-related metabolic responses by highlighting EVs as delivery platforms of metabolically active forms of adiponectin molecules.

3.
Biomedicines ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36140242

RESUMO

The SH2 containing protein tyrosine phosphatase 2(SHP2) plays essential roles in fundamental signaling pathways, conferring on it versatile physiological functions during development and in homeostasis maintenance, and leading to major pathological outcomes when dysregulated. Many studies have documented that SHP2 modulation disrupted glucose homeostasis, pointing out a relationship between its dysfunction and insulin resistance, and the therapeutic potential of its targeting. While studies from cellular or tissue-specific models concluded on both pros-and-cons effects of SHP2 on insulin resistance, recent data from integrated systems argued for an insulin resistance promoting role for SHP2, and therefore a therapeutic benefit of its inhibition. In this review, we will summarize the general knowledge of SHP2's molecular, cellular, and physiological functions, explaining the pathophysiological impact of its dysfunctions, then discuss its protective or promoting roles in insulin resistance as well as the potency and limitations of its pharmacological modulation.

4.
Sci Adv ; 8(12): eabg9055, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333579

RESUMO

Dysregulations of lipid metabolism in the liver may trigger steatosis progression, leading to potentially severe clinical consequences such as nonalcoholic fatty liver diseases (NAFLDs). Molecular mechanisms underlying liver lipogenesis are very complex and fine-tuned by chromatin dynamics and multiple key transcription factors. Here, we demonstrate that the nuclear factor HMGB1 acts as a strong repressor of liver lipogenesis. Mice with liver-specific Hmgb1 deficiency display exacerbated liver steatosis, while Hmgb1-overexpressing mice exhibited a protection from fatty liver progression when subjected to nutritional stress. Global transcriptome and functional analysis revealed that the deletion of Hmgb1 gene enhances LXRα and PPARγ activity. HMGB1 repression is not mediated through nucleosome landscape reorganization but rather via a preferential DNA occupation in a region carrying genes regulated by LXRα and PPARγ. Together, these findings suggest that hepatocellular HMGB1 protects from liver steatosis development. HMGB1 may constitute a new attractive option to therapeutically target the LXRα-PPARγ axis during NAFLD.

5.
Gut ; 71(4): 807-821, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903148

RESUMO

OBJECTIVE: We evaluated the influence of sex on the pathophysiology of non-alcoholic fatty liver disease (NAFLD). We investigated diet-induced phenotypic responses to define sex-specific regulation between healthy liver and NAFLD to identify influential pathways in different preclinical murine models and their relevance in humans. DESIGN: Different models of diet-induced NAFLD (high-fat diet, choline-deficient high-fat diet, Western diet or Western diet supplemented with fructose and glucose in drinking water) were compared with a control diet in male and female mice. We performed metabolic phenotyping, including plasma biochemistry and liver histology, untargeted large-scale approaches (liver metabolome, lipidome and transcriptome), gene expression profiling and network analysis to identify sex-specific pathways in the mouse liver. RESULTS: The different diets induced sex-specific responses that illustrated an increased susceptibility to NAFLD in male mice. The most severe lipid accumulation and inflammation/fibrosis occurred in males receiving the high-fat diet and Western diet, respectively. Sex-biased hepatic gene signatures were identified for these different dietary challenges. The peroxisome proliferator-activated receptor α (PPARα) co-expression network was identified as sexually dimorphic, and in vivo experiments in mice demonstrated that hepatocyte PPARα determines a sex-specific response to fasting and treatment with pemafibrate, a selective PPARα agonist. Liver molecular signatures in humans also provided evidence of sexually dimorphic gene expression profiles and the sex-specific co-expression network for PPARα. CONCLUSIONS: These findings underscore the sex specificity of NAFLD pathophysiology in preclinical studies and identify PPARα as a pivotal, sexually dimorphic, pharmacological target. TRIAL REGISTRATION NUMBER: NCT02390232.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo
6.
Sci Transl Med ; 13(591)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910978

RESUMO

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tecido Adiposo , Animais , Humanos , Inflamação , Macrófagos , Camundongos , Camundongos Knockout
7.
Cell Rep ; 27(2): 323-333.e5, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970240

RESUMO

Ectopic lipid deposition (ELD) is defined by excess fat storage in locations not classically associated with adipose tissue (AT) storage. ELD is positively correlated with insulin resistance and increased risk of metabolic disorders. ELD appears as lipid droplets or adipocytes, whose cell origin is unknown. We previously showed that subcutaneous AT (ScAT) releases adipocyte progenitors into the circulation. Here, we demonstrate that triggering or preventing the release of adipocyte precursors from ScAT directly promoted or limited ectopic adipocyte formation in skeletal muscle in mice. Importantly, obesity-associated metabolic disorders could be mimicked by causing adipocyte precursor release without a high-fat diet. Finally, during nutrient overload, adipocyte progenitors exited ScAT, where their retention signals (CXCR4/CXCL12 axis) were greatly decreased, and further infiltrated skeletal muscles. These data provide insights into the formation of ELD associated with calorie overload and highlight adipocyte progenitor trafficking as a potential target in the treatment of metabolic diseases.


Assuntos
Gordura Subcutânea/metabolismo , Animais , Humanos , Absorção Intramuscular , Camundongos , Células Estromais/metabolismo
12.
FASEB Bioadv ; 1(4): 227-245, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32123829

RESUMO

Alarmins and damage-associated molecular patterns (DAMPs) are powerful inflammatory mediators, capable of initiating and maintaining sterile inflammation during acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may also trigger tissue regeneration and repair, suggesting a potential contribution to tissue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, may be released passively by necrotic cells or actively secreted by innate immune cells. Macrophages can release large amounts of HMGB1 and play a key role in wound healing and regeneration processes. Here, we hypothesized that macrophages may be a key source of HMGB1 and thereby contribute to wound healing and fibrogenesis. Surprisingly, cell-specific deletion approaches, demonstrated that macrophage-derived HMGB1 is not involved in tissue fibrogenesis in multiple organs with different underlying pathologies. Compared to control HMGB1Flox mice, mice with macrophage-specific HMGB1 deletion (HMGB1ΔMac) do not display any modification of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile duct ligation; in the kidney following unilateral ureter obstruction; and in the heart after transverse aortic constriction. Of note, even under thermoneutral housing, known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not show impairment of fibrogenesis. In conclusion, our study clearly establishes that macrophage-derived HMGB1 does not contribute to tissue repair and fibrogenesis.

13.
Nat Med ; 24(9): 1360-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061698

RESUMO

Sarcopenia, the degenerative loss of skeletal muscle mass, quality and strength, lacks early diagnostic tools and new therapeutic strategies to prevent the frailty-to-disability transition often responsible for the medical institutionalization of elderly individuals. Herein we report that production of the endogenous peptide apelin, induced by muscle contraction, is reduced in an age-dependent manner in humans and rodents and is positively associated with the beneficial effects of exercise in older persons. Mice deficient in either apelin or its receptor (APLNR) presented dramatic alterations in muscle function with increasing age. Various strategies that restored apelin signaling during aging further demonstrated that this peptide considerably enhanced muscle function by triggering mitochondriogenesis, autophagy and anti-inflammatory pathways in myofibers as well as enhancing the regenerative capacity by targeting muscle stem cells. Taken together, these findings revealed positive regulatory feedback between physical activity, apelin and muscle function and identified apelin both as a tool for diagnosis of early sarcopenia and as the target of an innovative pharmacological strategy to prevent age-associated muscle weakness and restore physical autonomy.


Assuntos
Envelhecimento/patologia , Apelina/sangue , Sarcopenia/sangue , Adenilato Quinase/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apelina/biossíntese , Receptores de Apelina/deficiência , Receptores de Apelina/metabolismo , Peso Corporal , Exercício Físico , Humanos , Cinética , Camundongos Endogâmicos C57BL , Células Musculares/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Biogênese de Organelas , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcopenia/patologia , Células Satélites de Músculo Esquelético/metabolismo
14.
J Clin Invest ; 128(6): 2436-2451, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29558367

RESUMO

Cell death is a key driver of disease progression and carcinogenesis in chronic liver disease (CLD), highlighted by the well-established clinical correlation between hepatocellular death and risk for the development of cirrhosis and hepatocellular carcinoma (HCC). Moreover, hepatocellular death is sufficient to trigger fibrosis and HCC in mice. However, the pathways through which cell death drives CLD progression remain elusive. Here, we tested the hypothesis that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) with key roles in acute liver injury, may link cell death to injury responses and hepatocarcinogenesis in CLD. While liver-specific HMGB1 deficiency did not significantly affect chronic injury responses such as fibrosis, regeneration, and inflammation, it inhibited ductular/progenitor cell expansion and hepatocyte metaplasia. HMGB1 promoted ductular expansion independently of active secretion in a nonautonomous fashion, consistent with its role as a DAMP. Liver-specific HMGB1 deficiency reduced HCC development in 3 mouse models of chronic injury but not in a model lacking chronic liver injury. As with CLD, HMGB1 ablation reduced the expression of progenitor and oncofetal markers, a key determinant of HCC aggressiveness, in tumors. In summary, HMGB1 links hepatocyte death to ductular reaction, progenitor signature, and hepatocarcinogenesis in CLD.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Hepatócitos , Cirrose Hepática , Neoplasias Hepáticas , Proteínas de Neoplasias , Células-Tronco Neoplásicas , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pré-Escolar , Doença Crônica , Feminino , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
15.
Endocrine ; 60(1): 112-121, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29392617

RESUMO

PURPOSE: Apelin treatment has been shown to improve insulin sensitivity in insulin resistant mice by acting in skeletal muscles. However, the effects of systemic apelin on the hepatic energy metabolism have not been addressed. We thus aimed to determine the effect of chronic apelin treatment on the hepatic lipid metabolism in insulin resistant mice. The apelin receptor (APJ) expression was also studied in this context since its regulation has only been reported in severe liver pathologies. METHODS: Mice were fed a high-fat diet (HFD) in order to become obese and insulin resistant compared to chow fed mice (CD). HFD mice then received a daily intraperitoneal injection of apelin (0.1 µmol/kg) or PBS during 28 days. RESULTS: Triglycerides content and the expression of different lipogenesis-related genes were significantly decreased in the liver of HFD apelin-treated compared to PBS-treated mice. Moreover, at this stage of insulin resistance, the beta-oxidation was increased in liver homogenates of HFD PBS-treated mice compared to CD mice and reduced in HFD apelin-treated mice. Finally, APJ expression was not up-regulated in the liver of insulin resistant mice. In isolated hepatocytes from chow and HFD fed mice, apelin did not induce significant effect. CONCLUSIONS: Altogether, these results suggest that systemic apelin treatment decreases steatosis in insulin resistant mice without directly targeting hepatocytes.


Assuntos
Apelina/farmacologia , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Triglicerídeos/metabolismo
16.
Sci Signal ; 9(442): ra85, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27555662

RESUMO

Nuclear factor κB (NF-κB) is a master regulator of inflammation and cell death. Whereas most of the activity of NF-κB is regulated through the inhibitor of κB (IκB) kinase (IKK)-dependent degradation of IκB, IKK also phosphorylates subunits of NF-κB. We investigated the contribution of the phosphorylation of the NF-κB subunit p65 at the IKK phosphorylation site serine 536 (Ser(536)) in humans, which is thought to be required for the activation and nuclear translocation of NF-κB. Through experiments with knock-in mice (S534A mice) expressing a mutant p65 with an alanine-to-serine substitution at position 534 (the murine homolog of human Ser(536)), we observed increased expression of NF-κB-dependent genes after injection of mice with the inflammatory stimulus lipopolysaccharide (LPS) or exposure to gamma irradiation, and the enhanced gene expression was most pronounced at late time points. Compared to wild-type mice, S534A mice displayed increased mortality after injection with LPS. Increased NF-κB signaling in the S534A mice was at least in part explained by the increased stability of the S534A p65 protein compared to that of the Ser(534)-phosphorylated wild-type protein. Together, our results suggest that Ser(534) phosphorylation of p65 in mice (and, by extension, Ser(536) phosphorylation of human p65) is not required for its nuclear translocation, but instead inhibits NF-κB signaling to prevent deleterious inflammation.


Assuntos
Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Substituição de Aminoácidos , Animais , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Transgênicos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Serina/genética , Serina/metabolismo , Fator de Transcrição RelA/genética
17.
Gastroenterology ; 150(3): 720-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26627606

RESUMO

BACKGROUND & AIMS: Transforming growth factor-ß (TGFß) exerts key functions in fibrogenic cells, promoting fibrosis development in the liver and other organs. In contrast, the functions of TGFß in liver epithelial cells are not well understood, despite their high level of responsiveness to TGFß. We sought to determine the contribution of epithelial TGFß signaling to hepatic fibrogenesis and carcinogenesis. METHODS: TGFß signaling in liver epithelial cells was inhibited by albumin-Cre-, K19-CreERT-, Prom1-CreERT2-, or AAV8-TBG-Cre-mediated deletion of the floxed TGFß receptor II gene (Tgfbr2). Liver fibrosis was induced by carbon tetrachloride, bile duct ligation, or disruption of the multidrug-resistance transporter 2 gene (Mdr2). Hepatocarcinogenesis was induced by diethylnitrosamine or hepatic deletion of PTEN. RESULTS: Deletion of Tgfbr2 from liver epithelial cells did not alter liver injury, toxin-induced or biliary fibrosis, or diethylnitrosamine-induced hepatocarcinogenesis. In contrast, epithelial deletion of Tgfbr2 promoted tumorigenesis and reduced survival of mice with concomitant hepatic deletion of Pten, accompanied by an increase in tumor number and a shift from hepatocellular carcinoma to cholangiocarcinoma. Surprisingly, both hepatocyte- and cholangiocyte-specific deletion of Pten and Tgfbr2 promoted the development of cholangiocarcinoma, but with different latencies. The prolonged latency and the presence of hepatocyte-derived cholangiocytes after AAV8-TBG-Cre-mediated deletion of Tgfbr2 and Pten indicated that cholangiocarcinoma might arise from hepatocyte-derived cholangiocytes in this model. Pten deletion resulted in up-regulation of Tgfbr2, and deletion of Tgfbr2 increased cholangiocyte but not hepatocyte proliferation, indicating that the main function of epithelial TGFBR2 is to restrict cholangiocyte proliferation. CONCLUSIONS: Epithelial TGFß signaling does not contribute to the development of liver fibrosis or formation of hepatocellular carcinomas in mice, but restricts cholangiocyte proliferation to prevent cholangiocarcinoma development, regardless of its cellular origin.


Assuntos
Neoplasias dos Ductos Biliares/prevenção & controle , Ductos Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colangiocarcinoma/prevenção & controle , Células Epiteliais/metabolismo , Cirrose Hepática Experimental/metabolismo , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares/patologia , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Dietilnitrosamina , Células Epiteliais/patologia , Predisposição Genética para Doença , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Fatores de Tempo , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
18.
J Clin Invest ; 125(2): 539-50, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25562324

RESUMO

In contrast to microbially triggered inflammation, mechanisms promoting sterile inflammation remain poorly understood. Damage-associated molecular patterns (DAMPs) are considered key inducers of sterile inflammation following cell death, but the relative contribution of specific DAMPs, including high-mobility group box 1 (HMGB1), is ill defined. Due to the postnatal lethality of Hmgb1-knockout mice, the role of HMGB1 in sterile inflammation and disease processes in vivo remains controversial. Here, using conditional ablation strategies, we have demonstrated that epithelial, but not bone marrow-derived, HMGB1 is required for sterile inflammation following injury. Epithelial HMGB1, through its receptor RAGE, triggered recruitment of neutrophils, but not macrophages, toward necrosis. In clinically relevant models of necrosis, HMGB1/RAGE-induced neutrophil recruitment mediated subsequent amplification of injury, depending on the presence of neutrophil elastase. Notably, hepatocyte-specific HMGB1 ablation resulted in 100% survival following lethal acetaminophen intoxication. In contrast to necrosis, HMGB1 ablation did not alter inflammation or mortality in response to TNF- or FAS-mediated apoptosis. In LPS-induced shock, in which HMGB1 was considered a key mediator, HMGB1 ablation did not ameliorate inflammation or lethality, despite efficient reduction of HMGB1 serum levels. Our study establishes HMGB1 as a bona fide and targetable DAMP that selectively triggers a neutrophil-mediated injury amplification loop in the setting of necrosis.


Assuntos
Proteína HMGB1/metabolismo , Elastase de Leucócito/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores Imunológicos/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/farmacologia , Analgésicos não Narcóticos/efeitos adversos , Analgésicos não Narcóticos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Proteína HMGB1/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Elastase de Leucócito/genética , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Necrose/patologia , Neutrófilos/patologia , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Choque Séptico/induzido quimicamente , Choque Séptico/genética , Choque Séptico/metabolismo , Choque Séptico/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
19.
EMBO J ; 33(19): 2216-30, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25124681

RESUMO

In mammals, birth entails complex metabolic adjustments essential for neonatal survival. Using a mouse knockout model, we identify crucial biological roles for the miR-379/miR-410 cluster within the imprinted Dlk1-Dio3 region during this metabolic transition. The miR-379/miR-410 locus, also named C14MC in humans, is the largest known placental mammal-specific miRNA cluster, whose 39 miRNA genes are expressed only from the maternal allele. We found that heterozygote pups with a maternal--but not paternal--deletion of the miRNA cluster display partially penetrant neonatal lethality with defects in the maintenance of energy homeostasis. This maladaptive metabolic response is caused, at least in part, by profound changes in the activation of the neonatal hepatic gene expression program, pointing to as yet unidentified regulatory pathways that govern this crucial metabolic transition in the newborn's liver. Not only does our study highlight the physiological importance of miRNA genes that recently evolved in placental mammal lineages but it also unveils additional layers of RNA-mediated gene regulation at the Dlk1-Dio3 domain that impose parent-of-origin effects on metabolic control at birth and have likely contributed to mammal evolution.


Assuntos
Adaptação Fisiológica , Impressão Genômica , Gluconeogênese/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Northern Blotting , Proteínas de Ligação ao Cálcio , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Glicogenólise/fisiologia , Humanos , Hipoglicemia/metabolismo , Hipoglicemia/patologia , Cetonas/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Cell Metab ; 19(3): 539-47, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606906

RESUMO

In vitro studies have demonstrated a critical role for high-mobility group box 1 (HMGB1) in autophagy and the autophagic clearance of dysfunctional mitochondria, resulting in severe mitochondrial fragmentation and profound disturbances of mitochondrial respiration in HMGB1-deficient cells. Here, we investigated the effects of HMGB1 deficiency on autophagy and mitochondrial function in vivo, using conditional Hmgb1 ablation in the liver and heart. Unexpectedly, deletion of Hmgb1 in hepatocytes or cardiomyocytes, two cell types with abundant mitochondria, did not alter mitochondrial structure or function, organ function, or long-term survival. Moreover, hepatic autophagy and mitophagy occurred normally in the absence of Hmgb1, and absence of Hmgb1 did not significantly affect baseline and glucocorticoid-induced hepatic gene expression. Collectively, our findings suggest that HMGB1 is dispensable for autophagy, mitochondrial quality control, the regulation of gene expression, and organ function in the adult organism.


Assuntos
Autofagia , Proteína HMGB1/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético , Expressão Gênica , Proteína HMGB1/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...