RESUMO
Vasculogenic mimicry (VM) is the process where cancer cells adopt endothelial characteristics by forming tube-like structures and perfusing channels. This phenomenon has been demonstrated in several types of solid tumors and associated with the growth and survival of tumor cells. In this study, we investigated the presence of VM formation in human pancreatic ductal adenocarcinoma (PDAC) and elucidated the molecular mechanisms underlying the VM process. In human PDAC tissues, CD31-negative, periodic acid-Schiff (PAS)-positive channels were predominantly found in desmoplastic areas, which are generally also hypovascularized. We found a positive correlation of VM capacity to tumor size and NOTCH1 expression and nuclear localization with statistical significance, implicating that Notch activity is involved with VM formation. Additionally, our data showed that the presence of growth or angiogenic factors significantly increased Notch activity in PDAC cell lines and upregulated several mesenchymal marker genes, such as TWIST1 and SNAI1, which can be inhibited by a gamma-secretase inhibitor. Our data showed that Notch signaling plays an important role in inducing VM formation in PDAC by promoting the epithelial-to-mesenchymal transition process.