Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
2.
Microbiome ; 11(1): 90, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101209

RESUMO

BACKGROUND: The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS: Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS: We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION: This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Inulina , Humanos , Animais , Camundongos , Inulina/farmacologia , Dieta , Fibras na Dieta , Celulose , Epitélio , Comunicação Celular
3.
Inflammation ; 45(6): 2280-2293, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35840810

RESUMO

Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1ß-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1ß and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.


Assuntos
Hiperalgesia , Neutrófilos , Animais , Camundongos , Carragenina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Neutrófilos/metabolismo , Dor
4.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876919

RESUMO

Antibiotic-induced dysbiosis is a key predisposing factor for Clostridium difficile infections (CDIs), which cause intestinal disease ranging from mild diarrhea to pseudomembranous colitis. Here, we examined the impact of a microbiota-derived metabolite, short-chain fatty acid acetate, on an acute mouse model of CDI. We found that administration of acetate is remarkably beneficial in ameliorating disease. Mechanistically, we show that acetate enhances innate immune responses by acting on both neutrophils and ILC3s through its cognate receptor free fatty acid receptor 2 (FFAR2). In neutrophils, acetate-FFAR2 signaling accelerates their recruitment to the inflammatory sites, facilitates inflammasome activation, and promotes the release of IL-1ß; in ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor, which boosts IL-22 secretion in response to IL-1ß. We conclude that microbiota-derived acetate promotes host innate responses to C. difficile through coordinate action on neutrophils and ILC3s.


Assuntos
Acetatos/imunologia , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Enterocolite Pseudomembranosa/imunologia , Imunidade Inata/imunologia , Neutrófilos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Animais , Inflamassomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
5.
Nat Commun ; 10(1): 3273, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332169

RESUMO

Severe respiratory syncytial virus (RSV) infection is a major cause of morbidity and mortality in infants <2 years-old. Here we describe that high-fiber diet protects mice from RSV infection. This effect was dependent on intestinal microbiota and production of acetate. Oral administration of acetate mediated interferon-ß (IFN-ß) response by increasing expression of interferon-stimulated genes in the lung. These effects were associated with reduction of viral load and pulmonary inflammation in RSV-infected mice. Type 1 IFN signaling via the IFN-1 receptor (IFNAR) was essential for acetate antiviral activity in pulmonary epithelial cell lines and for the acetate protective effect in RSV-infected mice. Activation of Gpr43 in pulmonary epithelial cells reduced virus-induced cytotoxicity and promoted antiviral effects through IFN-ß response. The effect of acetate on RSV infection was abolished in Gpr43-/- mice. Our findings reveal antiviral effects of acetate involving IFN-ß in lung epithelial cells and engagement of GPR43 and IFNAR.


Assuntos
Acetatos/farmacologia , Interferon Tipo I/metabolismo , Microbiota , Receptores Acoplados a Proteínas G/metabolismo , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Células A549 , Acetatos/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Receptor de Interferon alfa e beta/genética , Receptores Acoplados a Proteínas G/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/virologia , Células Vero , Carga Viral/efeitos dos fármacos , Carga Viral/genética
6.
Cell Rep ; 27(3): 750-761.e7, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995474

RESUMO

Antibiotic-induced dysbiosis is a key factor predisposing intestinal infection by Clostridium difficile. Here, we show that interventions that restore butyrate intestinal levels mitigate clinical and pathological features of C. difficile-induced colitis. Butyrate has no effect on C. difficile colonization or toxin production. However, it attenuates intestinal inflammation and improves intestinal barrier function in infected mice, as shown by reduced intestinal epithelial permeability and bacterial translocation, effects associated with the increased expression of components of intestinal epithelial cell tight junctions. Activation of the transcription factor HIF-1 in intestinal epithelial cells exerts a protective effect in C. difficile-induced colitis, and it is required for butyrate effects. We conclude that butyrate protects intestinal epithelial cells from damage caused by C. difficile toxins via the stabilization of HIF-1, mitigating local inflammatory response and systemic consequences of the infection.


Assuntos
Butiratos/administração & dosagem , Clostridioides difficile/patogenicidade , Colite/prevenção & controle , Fator 1 Induzível por Hipóxia/metabolismo , Administração Oral , Animais , Antibacterianos/farmacologia , Butiratos/farmacologia , Clostridioides difficile/metabolismo , Colite/etiologia , Colite/microbiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Insulina/administração & dosagem , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Junções Íntimas/metabolismo , Toxinas Biológicas/toxicidade , Triglicerídeos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...