Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527764

RESUMO

OBJECTIVES: Inflammatory cytokines that signal through the Janus kinases-signal transducer and activator of transcription (JAK-STAT) pathway, especially interferons (IFNs), are implicated in Sjögren's disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signalling and the effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been fully investigated. METHODS: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single-cell (sc) RNA sequencing (RNAseq), immunofluorescence (IF) microscopy and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. RESULTS: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (eg, focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell type-specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFN-ß, which were normalised by JAKi without cytotoxicity. CONCLUSIONS: SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalises this aberrant signalling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a phase Ib/IIa randomised controlled trial to treat SjD with tofacitinib was initiated.

2.
J Clin Invest ; 132(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35113815

RESUMO

BMP6 is a central cytokine in the induction of Sjögren's syndrome-associated (SS-associated) secretory hypofunction. However, the upstream initiation leading to the production of this cytokine in SS is unknown. In this study, RNA ISH on salivary gland sections taken from patients with SS indicated monocytic lineage cells as a cellular source of BMP6. RNA-Seq data on human salivary glands suggested that TLR4 signaling was an upstream regulator of BMP6, which was confirmed by in vitro cell assays and single-cell transcriptomics of human PBMCs. Further investigation showed that HSP70 was an endogenous natural TLR4 ligand that stimulated BMP6 expression in SS. Release of HSP70 from epithelial cells could be triggered by overexpression of lysosome-associated membrane protein 3 (LAMP3), a protein also associated with SS in several transcriptome studies. In vitro studies supported the idea that HSP70 was released as a result of lysosomal exocytosis initiated by LAMP3 expression, and reverse transcription PCR on RNA from minor salivary glands of patients with SS confirmed a positive correlation between BMP6 and LAMP3 expression. BMP6 expression could be experimentally induced in mice by overexpression of LAMP3, which developed an SS-like phenotype. The newly identified LAMP3/HSP70/BMP6 axis provided an etiological model for SS gland dysfunction and autoimmunity.


Assuntos
Síndrome de Sjogren , Animais , Proteína Morfogenética Óssea 6/genética , Citocinas , Exocitose , Proteínas de Choque Térmico HSP70/genética , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , RNA , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Receptor 4 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...