Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biomolecules ; 14(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672489

RESUMO

Colorectal cancer (CRC) is a leading cause of death worldwide. Conventional therapies are available with varying effectiveness. Acetate, a short-chain fatty acid produced by human intestinal bacteria, triggers mitochondria-mediated apoptosis preferentially in CRC but not in normal colonocytes, which has spurred an interest in its use for CRC prevention/therapy. We previously uncovered that acetate-induced mitochondrial-mediated apoptosis in CRC cells is significantly enhanced by the inhibition of the lysosomal protease cathepsin D (CatD), which indicates both mitochondria and the lysosome are involved in the regulation of acetate-induced apoptosis. Herein, we sought to determine whether mitochondrial function affects CatD apoptotic function. We found that enhancement of acetate-induced apoptosis by CatD inhibition depends on oligomycin A-sensitive respiration. Mechanistically, the potentiating effect is associated with an increase in cellular and mitochondrial superoxide anion accumulation and mitochondrial mass. Our results provide novel clues into the regulation of CatD function and the effect of tumor heterogeneity in the outcome of combined treatment using acetate and CatD inhibitors.


Assuntos
Apoptose , Catepsina D , Neoplasias Colorretais , Mitocôndrias , Oligomicinas , Humanos , Acetatos/farmacologia , Apoptose/efeitos dos fármacos , Catepsina D/metabolismo , Catepsina D/antagonistas & inibidores , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Oligomicinas/farmacologia
2.
Pharmaceutics ; 15(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37376178

RESUMO

Colorectal cancer (CRC) is among the most deadly cancers worldwide. Current therapeutic strategies have low success rates and several side effects. This relevant clinical problem requires the discovery of new and more effective therapeutic alternatives. Ruthenium drugs have arisen as one of the most promising metallodrugs, due to their high selectivity to cancer cells. In this work we studied, for the first time, the anticancer properties and mechanisms of action of four lead Ru-cyclopentadienyl compounds, namely PMC79, PMC78, LCR134 and LCR220, in two CRC-derived cell lines (SW480 and RKO). Biological assays were performed on these CRC cell lines to evaluate cellular distribution, colony formation, cell cycle, proliferation, apoptosis, and motility, as well as cytoskeleton and mitochondrial alterations. Our results show that all the compounds displayed high bioactivity and selectivity, as shown by low half-maximal inhibitory concentrations (IC50) against CRC cells. We observed that all the Ru compounds have different intracellular distributions. In addition, they inhibit to a high extent the proliferation of CRC cells by decreasing clonogenic ability and inducing cell cycle arrest. PMC79, LCR134, and LCR220 also induce apoptosis, increase the levels of reactive oxygen species, lead to mitochondrial dysfunction, induce actin cytoskeleton alterations, and inhibit cellular motility. A proteomic study revealed that these compounds cause modifications in several cellular proteins associated with the phenotypic alterations observed. Overall, we demonstrate that Ru compounds, especially PMC79 and LCR220, display promising anticancer activity in CRC cells with a high potential to be used as new metallodrugs for CRC therapy.

3.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982144

RESUMO

Finding new therapeutic approaches towards colorectal cancer (CRC) is of increased relevance, as CRC is one of the most common cancers worldwide. CRC standard therapy includes surgery, chemotherapy, and radiotherapy, which may be used alone or in combination. The reported side effects and acquired resistance associated with these strategies lead to an increasing need to search for new therapies with better efficacy and less toxicity. Several studies have demonstrated the antitumorigenic properties of microbiota-derived short-chain fatty acids (SCFAs). The tumor microenvironment is composed by non-cellular components, microbiota, and a great diversity of cells, such as immune cells. The influence of SCFAs on the different constituents of the tumor microenvironment is an important issue that should be taken into consideration, and to the best of our knowledge there is a lack of reviews on this subject. The tumor microenvironment is not only closely related to the growth and development of CRC but also affects the treatment and prognosis of the patients. Immunotherapy has emerged as a new hope, but, in CRC, it was found that only a small percentage of patients benefit from this treatment being closely dependent on the genetic background of the tumors. The aim of this review was to perform an up-to-date critical literature review on current knowledge regarding the effects of microbiota-derived SCFAs in the tumor microenvironment, particularly in the context of CRC and its impact in CRC therapeutic strategies. SCFAs, namely acetate, butyrate, and propionate, have the ability to modulate the tumor microenvironment in distinct ways. SCFAs promote immune cell differentiation, downregulate the expression of pro-inflammatory mediators, and restrict the tumor-induced angiogenesis. SCFAs also sustain the integrity of basement membranes and modulate the intestinal pH. CRC patients have lower concentrations of SCFAs than healthy individuals. Increasing the production of SCFAs through the manipulation of the gut microbiota could constitute an important therapeutic strategy towards CRC due to their antitumorigenic effect and ability of modulating tumor microenvironment.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Microambiente Tumoral , Ácidos Graxos Voláteis/metabolismo , Butiratos/farmacologia
5.
Pharmaceutics ; 14(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365177

RESUMO

The colon microbiota is an important player in colorectal cancer (CRC) development, which is responsible for most of the cancer-related deaths worldwide. During carcinogenesis, the colon microbiota composition changes from a normobiosis profile to dysbiosis, interfering with the production of short-chain fatty acids (SCFAs). Each SCFA is known to play a role in several biological processes but, despite their reported individual effects, colon cells are exposed to these compounds simultaneously and the combined effect of SCFAs in colon cells is still unknown. Our aim was to explore the effects of SCFAs, alone or in combination, unveiling their biological impact on CRC cell phenotypes. We used a mathematical model for the prediction of the expected SCFA mixture effects and found that, when in mixture, SCFAs exhibit a concentration addition behavior. All SCFAs, alone or combined at the physiological proportions founded in the human colon, revealed to have a selective and anticancer effect by inhibiting colony formation and cell proliferation, increasing apoptosis, disturbing the energetic metabolism, inducing lysosomal membrane permeabilization, and decreasing cytosolic pH. We showed for the first time that SCFAs are specific towards colon cancer cells, showing promising therapeutic effects. These findings open a new road for the development of alternatives for CRC therapy based on the increase in SCFA levels through the modulation of the colon microbiota composition.

6.
Food Funct ; 13(18): 9183-9194, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996962

RESUMO

An unbalanced diet is one of the well-known risk factors for the development of colorectal cancer (CRC). This type of cancer is currently the main cause of cancer-related deaths worldwide, urging the need for new and more effective preventive and therapeutic approaches. It is already known that CRC patients have alterations in the microbial community and metabolism. In this regard, a concept that has been recently attracting the attention of the scientific community is the development of functional food or nutraceuticals, as a new and more effective strategy to overcome CRC patient-associated dysbiosis. Particularly, dairy product enriched diets are the major dairy source of dietary calcium, vitamin D and folate intake, which are well-known to have a protective effect against CRC development. In addition, these products are rich in both pre- and probiotics, constituting a double strategy to modulate both the intestinal microbiota composition and the production of microbial metabolites. Short-chain fatty acids (SCFA), namely, acetate, butyrate, and propionate, are major contributors to colonic homeostasis since they regulate several biological and metabolic processes. In this review, we performed a state of art study concerning the use of dietary patterns, specifically the dairy-derived diet, in the modulation of the human microbiota and their potential use as pre-, pro- or synbiotics for the development of new preventive and therapeutic strategies for CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Butiratos , Cálcio da Dieta , Neoplasias Colorretais/prevenção & controle , Dieta , Ácidos Graxos Voláteis , Ácido Fólico , Humanos , Propionatos , Vitamina D/uso terapêutico
7.
Pharmaceutics ; 14(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35890283

RESUMO

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

8.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883626

RESUMO

KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas p21(ras) , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Mutação/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
9.
Pharmaceutics ; 14(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745864

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies and one of the leading causes of cancer-related death worldwide, urging the need for new and more efficient therapeutic approaches. Ruthenium complexes have emerged as attractive alternatives to traditional platinum-based compounds in the treatment of CRC. This work aims to evaluate anti-CRC properties, as well as to identify the mechanisms of action of ruthenium complexes with the general formula [Ru(η5-C5H4R)(PPh3)(4,4'-R'-2,2'-bipyridine)][CF3SO3], where R = CH3, CHO or CH2OH and R' = H, CH3, CH2OH, or dibiotin ester. The complexes (Ru 1-7) displayed high bioactivity, as shown by low IC50 concentrations against CRC cells, namely, RKO and SW480. Four of the most promising ruthenium complexes (Ru 2, 5-7) were phenotypically characterized and were shown to inhibit cell viability by decreasing cell proliferation, inducing cell cycle arrest, and increasing apoptosis. These findings were in accordance with the inhibition of MEK/ERK and PI3K/AKT signaling pathways. Ruthenium complexes also led to a decrease in cellular clonogenic ability and cell migration, which was associated with the disruption of F-actin cytoskeleton integrity. Here, we demonstrated that ruthenium complexes, especially Ru7, have a high anticancer effect against CRC cells and are promising drugs to be used as a new therapeutical strategy for CRC treatment.

10.
Cells ; 11(3)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35159208

RESUMO

KRAS mutations are one of the most frequent oncogenic mutations of all human cancers, being more prevalent in pancreatic, colorectal, and lung cancers. Intensive efforts have been encouraged in order to understand the effect of KRAS mutations, not only on tumor cells but also on the dynamic network composed by the tumor microenvironment (TME). The relevance of the TME in cancer biology has been increasing due to its impact on the modulation of cancer cell activities, which can dictate the success of tumor progression. Here, we aimed to clarify the pro- and anti-inflammatory role of KRAS mutations over the TME, detailing the context and the signaling pathways involved. In this review, we expect to open new avenues for investigating the potential of KRAS mutations on inflammatory TME modulation, opening a different vision of therapeutic combined approaches to overcome KRAS-associated therapy inefficacy and resistance in cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Microambiente Tumoral/genética
11.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614056

RESUMO

Colorectal cancer (CRC) has been ranked as one of the cancer types with a higher incidence and one of the most mortal. There are limited therapies available for CRC, which urges the finding of intracellular targets and the discovery of new drugs for innovative therapeutic approaches. In addition to the limited number of effective anticancer agents approved for use in humans, CRC resistance and secondary effects stemming from classical chemotherapy remain a major clinical problem, reinforcing the need for the development of novel drugs. In the recent years, the phenoxazines derivatives, Nile Blue analogues, have been shown to possess anticancer activity, which has created interest in exploring the potential of these compounds as anticancer drugs. In this context, we have synthetized and evaluated the anticancer activity of different benzo[a]phenoxazine derivatives for CRC therapy. Our results revealed that one particular compound, BaP1, displayed promising anticancer activity against CRC cells. We found that BaP1 is selective for CRC cells and reduces cell proliferation, cell survival, and cell migration. We observed that the compound is associated with reactive oxygen species (ROS) generation, accumulates in the lysosomes, and leads to lysosomal membrane permeabilization, cytosolic acidification, and apoptotic cell death. In vivo results using a chicken embryo choriollantoic membrane (CAM) assay showed that BaP1 inhibits tumor growth, angiogenesis, and tumor proliferation. These observations highlight that BaP1 as a very interesting agent to disturb and counteract the important roles of lysosomes in cancer and suggests BaP1 as a promising candidate to be exploited as new anticancer lysosomal-targeted agent, which uses lysosome membrane permeabilization (LMP) as a therapeutic approach in CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Lisossomos , Oxazinas , Animais , Embrião de Galinha , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Lisossomos/metabolismo , Oxazinas/farmacologia
12.
J Fungi (Basel) ; 7(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34829259

RESUMO

Phenoxazine derivatives such as Nile Blue analogues are assumed to be increasingly relevant in cell biology due to their fluorescence staining capabilities and antifungal and anticancer activities. However, the mechanisms underlying their effects remain poorly elucidated. Using S. cerevisiae as a eukaryotic model, we found that BaP1, a novel 5- and 9-N-substituted benzo[a]phenoxazine synthesized in our laboratory, when used in low concentrations, accumulates and stains the vacuolar membrane and the endoplasmic reticulum. In contrast, at higher concentrations, BaP1 stains lipid droplets and induces a regulated cell death process mediated by vacuolar membrane permeabilization. BaP1 also induced mitochondrial fragmentation and depolarization but did not lead to ROS accumulation, changes in intracellular Ca2+, or loss of plasma membrane integrity. Additionally, our results show that the cell death process is dependent on the vacuolar protease Pep4p and that the vacuole permeabilization results in its translocation from the vacuole to the cytosol. In addition, although nucleic acids are commonly described as targets of benzo[a]phenoxazines, we did not find any alterations at the DNA level. Our observations highlight BaP1 as a promising molecule for pharmacological application, using vacuole membrane permeabilization as a targeted approach.

13.
Case Rep Urol ; 2021: 8884787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33489412

RESUMO

Growing teratoma syndrome is a rare condition described in both testicular and ovarian cancer. We present a case of a 26-year-old male with known mixed germ cell tumor which exhibited new and progressive secondary lesions during imaging surveillance, later to be histologically characterized as teratomas.

14.
Radiol Case Rep ; 16(2): 372-376, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33318776

RESUMO

Invasive lobular carcinoma is the second most common type of invasive carcinoma of the breast. Although rare, invasive lobular carcinoma can lead to gastric metastases, which may appear several years after the initial diagnosis. The diagnosis is difficult, either because of its rarity or because of overlapping symptoms and imaging findings with primary gastric carcinoma. Immunohistochemistry is the key to diagnosis. We report a case of a 40-year-old woman with a previous history of invasive lobular carcinoma of the breast 2 years before, who presented recurrent and nonspecific gastrointestinal symptoms. Imaging findings revealed linitis plastica and the biopsy showed the presence of signet ring cell neoplasia. After gastrectomy, immunohistochemistry demonstrated diffuse expression of GATA-3 and the presence of estrogen receptors in some neoplastic cells with CK20-, leading to the final diagnosis of gastric metastases from invasive lobular carcinoma of the breast.

15.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235674

RESUMO

A family of compounds with the general formula [Fe(η5-C5H5)(CO)(PPh3)(NCR)]+ has been synthesized (NCR = benzonitrile (1); 4-hydroxybenzonitrile (2); 4-hydroxymethylbenzonitrile (3); 4-aminobenzonitrile (4); 4-bromobenzonitrile (5); and, 4-chlorocinnamonitrile (6)). All of the compounds were obtained in good yields and were completely characterized by standard spectroscopic and analytical techniques. Compounds 1, 4, and 5 crystallize in the monoclinc P21/c space group and packing is determined by short contacts between the phosphane phenyl rings and cyclopentadienyl (compounds 1 and 4) or π-π lateral interactions between the benzonitrile molecules (complex 5). DFT and TD-DFT calculations were performed to help in the interpretation of the experimental UV-Vis. data and assign the electronic transitions. Cytotoxicity studies in MDA-MB-231 breast and SW480 colorectal cancer-derived cell lines showed IC50 values at a low micromolar range for all of the compounds in both cell lines. The determination of the selectivity index for colorectal cells (SW480 vs. NCM460, a normal colon-derived cell line) indicates that the compounds have some inherent selectivity. Further studies on the SW480 cell line demonstrated that the compounds induce cell death by apoptosis, inhibit proliferation by inhibiting the formation of colonies, and affect the actin-cytoskeleton of the cells. These results are not observed for the hydroxylated compounds 2 and 3, where an alternative mode of action might be present. Overall, the results indicate that the substituent at the nitrile-based ligand is associated to the biological activity of the compounds.


Assuntos
Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Humanos , Masculino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
Curr Med Chem ; 27(24): 4087-4108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-29848266

RESUMO

Colorectal Cancer (CRC) is a major cause of cancer-related death worldwide. CRC increased risk has been associated with alterations in the intestinal microbiota, with decreased production of Short Chain Fatty Acids (SCFAs). SCFAs produced in the human colon are the major products of bacterial fermentation of undigested dietary fiber and starch. While colonocytes use the three major SCFAs, namely acetate, propionate and butyrate, as energy sources, transformed CRC cells primarily undergo aerobic glycolysis. Compared to normal colonocytes, CRC cells exhibit increased sensitivity to SCFAs, thus indicating they play an important role in cell homeostasis. Manipulation of SCFA levels in the intestine, through changes in microbiota, has therefore emerged as a potential preventive/therapeutic strategy for CRC. Interest in understanding SCFAs mechanism of action in CRC cells has increased in the last years. Several SCFA transporters like SMCT-1, MCT-1 and aquaporins have been identified as the main transmembrane transporters in intestinal cells. Recently, it was shown that acetate promotes plasma membrane re-localization of MCT-1 and triggers changes in the glucose metabolism. SCFAs induce apoptotic cell death in CRC cells, and further mechanisms have been discovered, including the involvement of lysosomal membrane permeabilization, associated with mitochondria dysfunction and degradation. In this review, we will discuss the current knowledge on the transport of SCFAs by CRC cells and their effects on CRC metabolism and survival. The impact of increasing SCFA production by manipulation of colon microbiota on the prevention/therapy of CRC will also be addressed.


Assuntos
Neoplasias Colorretais , Dieta , Fibras na Dieta , Ácidos Graxos Voláteis , Humanos
17.
Inorg Chem ; 58(14): 9135-9149, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31241925

RESUMO

Prospective anticancer metallodrugs should consider target-specific components in their design in order to overcome the limitations of the current chemotherapeutics. The inclusion of vitamins, which receptors are overexpressed in many cancer cell lines, has proven to be a valid strategy. Therefore, in this paper we report the synthesis and characterization of a set of new compounds [Ru(η5-C5H5)(P(C6H4R)3)(4,4'-R'-2,2'-bpy)]+ (R = F and R' = H, 3; R = F and R' = biotin, 4; R = OCH3 and R' = H, 5; R = OCH3 and R' = biotin, 6), inspired by the exceptional good results recently obtained for the analogue bearing a triphenylphosphane ligand. The precursors for these syntheses were also described following modified literature procedures, [Ru(η5-C5H5)(P(C6H4R)3)2Cl], where R is -F (1) or -OCH3 (2). The structure of all compounds is fully supported by spectroscopic and analytical techniques and by X-ray diffraction studies for compounds 2, 3, and 5. All cationic compounds are cytotoxic in the two breast cancer cell lines tested, MCF7 and MDA-MB-231, and much better than cisplatin under the same experimental conditions. The cytotoxicity of the biotinylated compounds seems to be related with the Ru uptake by the cells expressing biotin receptors, indicating a potential mediated uptake. Indeed, a biotin-avidin study confirmed that the attachment of biotin to the organometallic fragment still allows biotin recognition by the protein. Therefore, the biotinylated compounds might be potent anticancer drugs as they show cytotoxic effect in breast cancer cells at low dose dependent on the compounds' uptake, induce cell death by apoptosis and inhibit the colony formation of cancer cells causing also less severe side effects in zebrafish.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Biotina/química , Ciclopentanos/química , Compostos de Rutênio/síntese química , Animais , Antineoplásicos/toxicidade , Biotina/farmacologia , Biotinilação , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cristalografia por Raios X , Ciclopentanos/farmacologia , Humanos , Estrutura Molecular , Compostos de Rutênio/química , Compostos de Rutênio/farmacologia , Testes de Toxicidade , Peixe-Zebra
18.
Eur J Med Chem ; 168: 373-384, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826512

RESUMO

In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclopentanos/química , Polímeros/farmacologia , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
19.
Biol Chem ; 400(6): 787-799, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30699066

RESUMO

Monocarboxylate transporters (MCTs) inhibition leads to disruption in glycolysis, induces cell death and decreases cell invasion, revealing the importance of MCT activity in intracellular pH homeostasis and tumor aggressiveness. 3-Bromopyruvate (3BP) is an anti-tumor agent, whose uptake occurs via MCTs. It was the aim of this work to unravel the importance of extracellular conditions on the regulation of MCTs and in 3BP activity. HCT-15 was found to be the most sensitive cell line, and also the one that presented the highest basal expression of both MCT1 and of its chaperone CD147. Glucose starvation and hypoxia induced an increased resistance to 3BP in HCT-15 cells, in contrast to what happens with an extracellular acidic pH, where no alterations in 3BP cytotoxicity was observed. However, no association with MCT1, MCT4 and CD147 expression was observed, except for glucose starvation, where a decrease in CD147 (but not of MCT1 and MCT4) was detected. These results show that 3BP cytotoxicity might include other factors beyond MCTs. Nevertheless, treatment with short-chain fatty acids (SCFAs) increased the expression of MCT4 and CD147 as well as the sensitivity of HCT-15 cells to 3BP. The overall results suggest that MCTs influence the 3BP effect, although they are not the only players in its mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Basigina/metabolismo , Neoplasias Colorretais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piruvatos/farmacologia , Simportadores/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Glucose/metabolismo , Glicólise , Humanos , Concentração de Íons de Hidrogênio , Oxigênio/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
20.
Insights Imaging ; 9(5): 791-814, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30120723

RESUMO

Ultrasound elastography (USE) is a recent technology that has experienced major developments in the past two decades. The assessment of the main mechanical properties of tissues can be made with this technology by characterisation of their response to stress. This article reviews the two major techniques used in musculoskeletal elastography, compression elastography (CE) and shear-wave elastography (SWE), and evaluates the studies published on major electronic databases that use both techniques in the context of tendon pathology. CE accounts for more studies than SWE. The mechanical properties of tendons, particularly their stiffness, may be altered in the presence of tendon injury. CE and SWE have already been used for the assessment of Achilles tendons, patellar tendon, quadriceps tendon, epicondylar tendons and rotator cuff tendons and muscles. Achilles tendinopathy is the most studied tendon injury with USE, including the postoperative period after surgical repair of Achilles rupture tendon. In relation to conventional ultrasound (US), USE potentially increases the sensitivity and diagnostic accuracy in tendinopathy, and can detect pathological changes before they are visible in conventional US imaging. Several technical limitations are recognised, and standardisation is necessary to ensure repeatability and comparability of the results when using these techniques. Still, USE is a promising technique under development and may be used not only to promote an early diagnosis, but also to identify the risk of injury and to support the evaluation of rehabilitation interventions. KEY POINTS: • USE is used for the assessment of the mechanical properties of tissues, including the tendons. • USE increases diagnostic performance when coupled to conventional US imaging modalities. • USE will be useful in early diagnosis, tracking outcomes and monitoring treatments of tendon injury. • Technical issues and lack of standardisation limits USE use in the assessment of tendon injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...