Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
1.
Ann Neurol ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301775

RESUMO

OBJECTIVE: De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS: Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS: We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION: Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.

4.
Mol Genet Metab ; 142(3): 108511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878498

RESUMO

The diagnosis of Mendelian disorders has notably advanced with integration of whole exome and genome sequencing (WES and WGS) in clinical practice. However, challenges in variant interpretation and uncovered variants by WES still leave a substantial percentage of patients undiagnosed. In this context, integrating RNA sequencing (RNA-seq) improves diagnostic workflows, particularly for WES inconclusive cases. Additionally, functional studies are often necessary to elucidate the impact of prioritized variants on gene expression and protein function. Our study focused on three unrelated male patients (P1-P3) with ATP6AP1-CDG (congenital disorder of glycosylation), presenting with intellectual disability and varying degrees of hepatopathy, glycosylation defects, and an initially inconclusive diagnosis through WES. Subsequent RNA-seq was pivotal in identifying the underlying genetic causes in P1 and P2, detecting ATP6AP1 underexpression and aberrant splicing. Molecular studies in fibroblasts confirmed these findings and identified the rare intronic variants c.289-233C > T and c.289-289G > A in P1 and P2, respectively. Trio-WGS also revealed the variant c.289-289G > A in P3, which was a de novo change in both patients. Functional assays expressing the mutant alleles in HAP1 cells demonstrated the pathogenic impact of these variants by reproducing the splicing alterations observed in patients. Our study underscores the role of RNA-seq and WGS in enhancing diagnostic rates for genetic diseases such as CDG, providing new insights into ATP6AP1-CDG molecular bases by identifying the first two deep intronic variants in this X-linked gene. Additionally, our study highlights the need to integrate RNA-seq and WGS, followed by functional validation, in routine diagnostics for a comprehensive evaluation of patients with an unidentified molecular etiology.


Assuntos
Íntrons , RNA Mensageiro , Humanos , Masculino , Íntrons/genética , RNA Mensageiro/genética , ATPases Vacuolares Próton-Translocadoras/genética , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/patologia , Mutação , Sequenciamento Completo do Genoma , Sequenciamento do Exoma , Análise de Sequência de RNA , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Criança , Splicing de RNA/genética , Pré-Escolar
5.
Eur J Neurosci ; 60(2): 4004-4018, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38746988

RESUMO

MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder caused by the gain of dose of at least the genes MECP2 and IRAK1 and is characterised by intellectual disability (ID), developmental delay, hypotonia, epilepsy and recurrent infections. It mainly affects males, and females can be affected or asymptomatic carriers. Rett syndrome (RTT) is mainly triggered by loss of function mutations in MECP2 and is a well described syndrome that presents ID, epilepsy, lack of purposeful hand use and impaired speech, among others. As a result of implementing omics technology, altered biological pathways in human RTT samples have been reported, but such molecular characterisation has not been performed in patients with MDS. We gathered human skin fibroblasts from 17 patients with MDS, 10 MECP2 duplication carrier mothers and 21 patients with RTT, and performed multi-omics (RNAseq and proteomics) analysis. Here, we provide a thorough description and compare the shared and specific dysregulated biological processes between the cohorts. We also highlight the genes TMOD2, SRGAP1, COPS2, CNPY2, IGF2BP1, MOB2, VASP, FZD7, ECSIT and KIF3B as biomarker and therapeutic target candidates due to their implication in neuronal functions. Defining the RNA and protein profiles has shown that our four cohorts are less alike than expected by their shared phenotypes.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Proteômica , Síndrome de Rett , Humanos , Feminino , Proteína 2 de Ligação a Metil-CpG/genética , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Síndrome de Rett/genética , Criança , Adulto , Adolescente , Heterozigoto , Pré-Escolar , Fibroblastos/metabolismo , Adulto Jovem , Multiômica
6.
Nat Metab ; 6(6): 1128-1142, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38720117

RESUMO

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.


Assuntos
Complexo I de Transporte de Elétrons , Doenças Mitocondriais , Proteínas Mitocondriais , Humanos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731822

RESUMO

Our understanding of rare disease genetics has been shaped by a monogenic disease model. While the traditional monogenic disease model has been successful in identifying numerous disease-associated genes and significantly enlarged our knowledge in the field of human genetics, it has limitations in explaining phenomena like phenotypic variability and reduced penetrance. Widening the perspective beyond Mendelian inheritance has the potential to enable a better understanding of disease complexity in rare disorders. Digenic inheritance is the simplest instance of a non-Mendelian disorder, characterized by the functional interplay of variants in two disease-contributing genes. Known digenic disease causes show a range of pathomechanisms underlying digenic interplay, including direct and indirect gene product interactions as well as epigenetic modifications. This review aims to systematically explore the background of digenic inheritance in rare disorders, the approaches and challenges when investigating digenic inheritance, and the current evidence for digenic inheritance in mitochondrial disorders.


Assuntos
Doenças Mitocondriais , Doenças Raras , Humanos , Doenças Mitocondriais/genética , Doenças Raras/genética , Predisposição Genética para Doença , Epigênese Genética , Herança Multifatorial/genética , Animais
8.
Brain Commun ; 6(3): fcae160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756539

RESUMO

Autosomal recessive pathogenetic variants in the DGUOK gene cause deficiency of deoxyguanosine kinase activity and mitochondrial deoxynucleotides pool imbalance, consequently, leading to quantitative and/or qualitative impairment of mitochondrial DNA synthesis. Typically, patients present early-onset liver failure with or without neurological involvement and a clinical course rapidly progressing to death. This is an international multicentre study aiming to provide a retrospective natural history of deoxyguanosine kinase deficient patients. A systematic literature review from January 2001 to June 2023 was conducted. Physicians of research centres or clinicians all around the world caring for previously reported patients were contacted to provide followup information or additional clinical, biochemical, histological/histochemical, and molecular genetics data for unreported cases with a confirmed molecular diagnosis of deoxyguanosine kinase deficiency. A cohort of 202 genetically confirmed patients, 36 unreported, and 166 from a systematic literature review, were analyzed. Patients had a neonatal onset (≤ 1 month) in 55.7% of cases, infantile (>1 month and ≤ 1 year) in 32.3%, pediatric (>1 year and ≤18 years) in 2.5% and adult (>18 years) in 9.5%. Kaplan-Meier analysis showed statistically different survival rates (P < 0.0001) among the four age groups with the highest mortality for neonatal onset. Based on the clinical phenotype, we defined four different clinical subtypes: hepatocerebral (58.8%), isolated hepatopathy (21.9%), hepatomyoencephalopathy (9.6%), and isolated myopathy (9.6%). Muscle involvement was predominant in adult-onset cases whereas liver dysfunction causes morbidity and mortality in early-onset patients with a median survival of less than 1 year. No genotype-phenotype correlation was identified. Liver transplant significantly modified the survival rate in 26 treated patients when compared with untreated. Only six patients had additional mild neurological signs after liver transplant. In conclusion, deoxyguanosine kinase deficiency is a disease spectrum with a prevalent liver and brain tissue specificity in neonatal and infantile-onset patients and muscle tissue specificity in adult-onset cases. Our study provides clinical, molecular genetics and biochemical data for early diagnosis, clinical trial planning and immediate intervention with liver transplant and/or nucleoside supplementation.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38617829

RESUMO

Background: Spinocerebellar ataxia 21 (SCA21) is a rare neurological disorder caused by heterozygous variants in TMEM240. A growing, yet still limited number of reports suggested that hyperkinetic movements should be considered a defining component of the disease. Case Series: We describe two newly identified families harboring the recurrent pathogenic TMEM240 p.Pro170Leu variant. Both index patients and the mother of the first proband developed movement disorders, manifesting as myoclonic dystonia and action-induced dystonia without co-occurring ataxia in one case, and pancerebellar syndrome complicated by action-induced dystonia in the other. We reviewed the literature on TMEM240 variants linked to hyperkinetic disorders, comparing our cases to described phenotypes. Discussion: Adding to prior preliminary observations, our series highlights the relevance of hyperkinetic movements as clinically meaningful features of SCA21. TMEM240 mutation should be included in the differential diagnosis of myoclonic dystonia and ataxia-dystonia syndromes.


Assuntos
Distonia , Distúrbios Distônicos , Mioclonia , Degenerações Espinocerebelares , Humanos , Distonia/diagnóstico , Distonia/genética , Mioclonia/diagnóstico , Mioclonia/genética , Hipercinese , Ataxia , Doenças Raras , Síndrome , Proteínas de Membrana
12.
Int J Neonatal Screen ; 10(1)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535121

RESUMO

Newborn screening (NBS) for hepatorenal tyrosinemia type I (HT1) based on a determination of succinylacetone is performed in countries worldwide. Recently, biallelic pathogenic variants in GSTZ1 underlying maleylacetoacetate isomerase (MAAI) deficiency have been described as a differential diagnosis in individuals with slightly elevated succinylacetone detected by NBS. We report the experience with NBS for HT1 over 53 months in a large German NBS center and the identification and characterization of additional cases with MAAI deficiency, including one individual with a natural history over 32 years. A total of 516,803 children underwent NBS for HT1 at the NBS center in Heidelberg between August 2016 and December 2020. Of 42 children with elevated succinylacetone, HT1 was confirmed in two cases (1 in 258.401). MAAI deficiency was suspected in two cases and genetically confirmed in one who showed traces of succinylacetone in urine. A previously unreported pathogenic GSTZ1 variant was found in the index in a biallelic state. Segregation analysis revealed monoallelic carriership in the index case's mother and homozygosity in his father. The 32-year-old father had no medical concerns up to that point and the laboratory work-up was unremarkable. MAAI has to be considered a rare differential diagnosis in NBS for HT1 in cases with slight elevations of succinylacetone to allow for correct counselling and treatment decisions. Our observation of natural history over 32 years adds evidence for a benign clinical course of MAAI deficiency without specific treatment.

13.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478578

RESUMO

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Humanos , Doença de Leigh/genética , Atrofia Óptica Hereditária de Leber/genética , Masculino , Feminino , Adulto , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Criança , Adolescente , NADH Desidrogenase/genética , Mutação , Adulto Jovem , Sequenciamento do Exoma , Pré-Escolar
14.
Genet Med ; 26(6): 101120, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38469793

RESUMO

PURPOSE: Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy. METHODS: Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease. Specifically, the 2 siblings from the latter family carried 2 compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330∗), whereas the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs∗24) variant, and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs∗11) variant. Functional studies were conducted using sodium dodecyl-sulfate polyacrylamide gel electrophoresis, western blotting, and mass spectrometry analyses in both patient-derived and CRISPR-Cas9-generated cells. RESULTS: Our investigations indicated that the USP14 variants correlated with reduced N-terminal methionine excision, along with profound alterations in proteasome, autophagy, and mitophagy activities. CONCLUSION: Biallelic USP14 variants in NDD patients perturbed protein degradation pathways, potentially contributing to disorder etiology. Altered UPS, autophagy, and mitophagy activities underscore the intricate interplay, elucidating their significance in maintaining proper protein homeostasis during brain development.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Feminino , Masculino , Alelos , Autofagia/genética , Ubiquitina Tiolesterase/genética , Recém-Nascido , Complexo de Endopeptidases do Proteassoma/genética , Linhagem , Homozigoto , Predisposição Genética para Doença , Mutação/genética
15.
Am J Hum Genet ; 111(3): 594-613, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
16.
Mov Disord Clin Pract ; 11(1): 87-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38291845

RESUMO

BACKGROUND: VPS16 pathogenic variants have been recently associated with inherited dystonia. Most patients affected by dominant VPS16-related disease display early-onset isolated dystonia with prominent oromandibular, bulbar, cervical, and upper limb involvement, followed by slowly progressive generalization. CASES: We describe six newly reported dystonic patients carrying VPS16 mutations displaying unusual phenotypic features in addition to dystonia, such as myoclonus, choreoathetosis, pharyngospasm and freezing of gait. Response to bilateral Globus Pallidus Internus Deep Brain Stimulation (GPi-DBS) is reported in three of them, associated with significant improvement of dystonia but only minor effect on other hyperkinetic movements. Moreover, five novel pathogenic/likely pathogenic variants are described. CONCLUSIONS: This case collection expands the genetic and clinical spectrum of VPS16-related disease, prompting movement disorder specialists to suspect mutations of this gene not only in patients with isolated dystonia.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Distonia/diagnóstico , Estimulação Encefálica Profunda/métodos , Distúrbios Distônicos/diagnóstico , Proteínas de Transporte Vesicular
17.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272025

RESUMO

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estudos Retrospectivos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Complexo I de Transporte de Elétrons/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
18.
Neuron ; 112(7): 1117-1132.e9, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38266647

RESUMO

Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Humanos , Neurônios/fisiologia , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Resposta a Proteínas não Dobradas , Astrócitos/metabolismo , Doenças Mitocondriais/metabolismo , Reprogramação Celular , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo
19.
Mol Genet Metab ; 141(3): 108118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244286

RESUMO

Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.


Assuntos
Falência Hepática Aguda , Neuroblastoma , Anomalia de Pelger-Huët , Humanos , Fenótipo , Anomalia de Pelger-Huët/complicações , Anomalia de Pelger-Huët/genética , Anomalia de Pelger-Huët/patologia , Falência Hepática Aguda/genética , Mutação de Sentido Incorreto , Neuroblastoma/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...