Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 304, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974213

RESUMO

BACKGROUND: Diffuse pleural mesothelioma (DPM) is an aggressive therapy-resistant cancer with unique molecular features. Numerous agents have been tested, but clinically effective ones remain elusive. Herein, we propose to use a small molecule CBL0137 (curaxin) that simultaneously suppresses nuclear factor-κB (NF-κB) and activates tumor suppressor p53 via targeting FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone critical for DNA repair. METHODS: We used DPM cell lines, murine models (xeno- and allo-grafts), plus DPM patient samples to characterize anti-tumor effects of CBL0137 and to delineate specific molecular mechanisms. RESULTS: We verified that CBL0137 induced cell cycle arrest and apoptosis. We also discovered that DPM is a FACT-dependent cancer with overexpression of both subunits structure-specific recognition protein 1 (SSRP1), a poor prognosis indicator, and suppressor of Ty 16 (SUPT16H). We defined several novel uses of CBL0137 in DPM therapy. In combination with cisplatin, CBL0137 exhibited additive anti-tumor activity compared to monotherapy. Similarly, CBL0137 (systemic) could be combined with other novel agents like microRNA-215 (intrapleural) as a more effective regimen. Importantly, we established that CBL0137 induces immunogenic cell death that contributes to activating immune response pathways in DPM. Therefore, when CBL0137 is combined with dual immune checkpoint inhibitors DPM tumor growth is significantly suppressed. CONCLUSIONS: We identified an unrecognized molecular vulnerability of DPM based on FACT dependency. CBL0137 alone and in several combinations with different therapeutics showed promising efficacy, including that of improved anti-tumor immunity. Overall, these preclinical findings suggest that CBL0137 could be ideally suited for use in DPM clinical trials.


Assuntos
Mesotelioma Maligno , Mesotelioma , MicroRNAs , Humanos , Camundongos , Animais , Cromatina , Cisplatino , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Imunoterapia , Proteínas de Ligação a DNA , Proteínas de Grupo de Alta Mobilidade , Fatores de Elongação da Transcrição , Fatores de Transcrição , Proteínas de Ciclo Celular , MicroRNAs/genética
2.
Emerg Microbes Infect ; 12(2): 2276338, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883246

RESUMO

There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Organoides , Interferons/genética
3.
Mol Ther Nucleic Acids ; 24: 669-681, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33996251

RESUMO

Malignant pleural mesothelioma (MPM) is an incurable surface neoplasm with peculiar pathobiology. MPM proliferates by using the tyrosine-kinase-Ras pathway. Despite representing an attractive therapeutic target, there are no standard agent(s) specifically inhibiting Ras signaling adopted in clinical settings. We posited that biologic effects of microRNA (miRNA) can disrupt this molecular network. Using patient samples, cell lines, and murine tumor xenograft models, we confirmed specific genes in the Ras pathway are targeted by an MPM-associated miRNA and then examined its therapeutic effects. We verified significant and consistent downregulation of miR-206 in MPM tissues. When miR-206 is ectopically re-expressed in MPM cells and delivered to tumor xenografts in mice, it exerted significant cell killing by suppressing multiple components of the receptor-tyrosine-kinase-Ras-cell-cycle-signaling network; some of which were prognostic when overexpressed and/or have not been druggable. Of note, we validated CDK6 as a novel target of miR-206. Overall, this miR-206-targeting mechanism manifested as induced G1/S cell cycle arrest. In addition, we identified a novel MPM therapeutic combination by adding systemic-route abemaciclib with local-route miR-206, which showed additive efficacy translating to improved survival. Our pre-clinical study suggests a potential pathophysiologic role for, and therapeutic relevance of, miR-206 in MPM.

4.
Expert Opin Drug Discov ; 16(6): 697-708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33380218

RESUMO

INTRODUCTION: Mesothelioma is an aggressive mesothelial lining tumor. Available drug therapies include chemotherapeutic agents, targeted molecular therapies, and immune system modulators. Mouse models were instrumental in the discovery and evaluation of such therapies, but there is need for improved understanding of the role of inflammation, tumor heterogeneity, mechanisms of carcinogenesis, and the tumor microenvironment. Novel mouse models may provide new insights and drive drug therapy discovery that improves efficacy. AREAS COVERED: This review concerns available mouse models for mesothelioma drug discovery and development including the advantages and disadvantages of each. Gaps in current knowledge of mesothelioma are highlighted, and future directions for mouse model research are considered. EXPERT OPINION: Soon, CRISPR-Cas gene-editing will improve understanding of mesothelioma mechanisms foundational to the discovery and testing of efficacious therapeutic targets. There are at least two likely areas of upcoming methodology development. One is concerned with precise modeling of inflammation - is it a causal process whereby inflammatory signals contribute to tumor initiation, or is it a secondary passenger process driven by asbestos exposure effects? The other area of methods improvement regards the availability of humanized immunocompromised mice harboring patient-derived xenografts. Combining human tumors in an environment with human immune cells will enable rapid innovation in immuno-oncology therapeutics.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Animais , Carcinogênese , Descoberta de Drogas , Mesotelioma/tratamento farmacológico , Camundongos , Microambiente Tumoral
5.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L652-L660, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726133

RESUMO

Mesothelial cells are arranged as a monolayer on covering membranes that invest surfaces of body cavities like the pleura and peritoneum. Primary human mesothelial cell (HMC) cultures are needed for studying mesothelial cell homeostasis and developing disease models, such as wound healing or cancers. Remarkably, there is a paucity of useable HMC lines that are currently available that faithfully recapitulate normal in vivo phenotypic characteristics. Here, we present a strategy to recover HMC from human pleural tissue and to immortalize them for extended in vitro culturing. Human pleural membrane was harvested by minimally invasive surgical techniques. HMC were isolated using a two-step process combining explant cellular outgrowth from biopsy tissue and flow cytometry based on cell surface expression of cadherin-1 and CD71. Cell cultures were generated after lentiviral transfection with human telomerase. The new HMC cultures retain the same phenotypic traits and physiologic features as their in vivo counterparts, yet they can be adapted for short-term or long-term culture in large-scale in vitro experimentation. In particular, we generated a new HMC line harboring a germline mutation in breast cancer type-1-associated protein-1 (BAP1), a causal tumor suppressor gene, that could be instrumental to malignant mesothelioma research. Patient-specific, normal HMC may serve as novel discovery tools allowing more powerful research models of both normal physiology and disease processes. Our surgically driven approach leads to a limitless resource of novel mesothelial cell cultures.


Assuntos
Epitélio/patologia , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Pleura/patologia , Neoplasias Pleurais/patologia , Biópsia/métodos , Humanos , Mesotelioma Maligno , Neoplasias Pleurais/metabolismo , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
6.
Cell ; 178(5): 1145-1158.e20, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31402173

RESUMO

While Mediator plays a key role in eukaryotic transcription, little is known about its mechanism of action. This study combines CRISPR-Cas9 genetic screens, degron assays, Hi-C, and cryoelectron microscopy (cryo-EM) to dissect the function and structure of mammalian Mediator (mMED). Deletion analyses in B, T, and embryonic stem cells (ESC) identified a core of essential subunits required for Pol II recruitment genome-wide. Conversely, loss of non-essential subunits mostly affects promoters linked to multiple enhancers. Contrary to current models, however, mMED and Pol II are dispensable to physically tether regulatory DNA, a topological activity requiring architectural proteins. Cryo-EM analysis revealed a conserved core, with non-essential subunits increasing structural complexity of the tail module, a primary transcription factor target. Changes in tail structure markedly increase Pol II and kinase module interactions. We propose that Mediator's structural pliability enables it to integrate and transmit regulatory signals and act as a functional, rather than an architectural bridge, between promoters and enhancers.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica , Elementos Facilitadores Genéticos , Edição de Genes , Humanos , Masculino , Complexo Mediador/química , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , RNA Polimerase II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
7.
Mol Ther ; 27(9): 1665-1680, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31227395

RESUMO

Malignant pleural mesothelioma (MPM) is an incurable, aggressive neoplasm with distinctive features, including preservation of wild-type p53, irrespective of histologic subtype. We posited that this consistent molecular characteristic represents an underexploited therapeutic target that can be approached by leveraging biologic effects of microRNA (miRNA). The Cancer Genome Atlas was surveyed to identify p53-responsive prognostic miRNA(s) in MPM. Using patient samples, in vitro MPM cell lines, and murine tumor xenograft models, we verified specific gene pathways targeted by these miRNAs, and we examined their therapeutic effects. miR-215-5p is a poor prognosis miRNA downregulated in MPM tissues, which has not been recognized previously. When miR-215-5p was ectopically re-expressed in MPM cells and delivered in vivo to tumor xenografts, it exerted significant cell killing by activating p53 function and inducing apoptosis. The mechanistic basis for this effect is due to combinatorial effects of a positive feedback loop of miR-215-MDM2-p53 signaling, additional mouse double minute 2 (MDM2)-p53 positive feedback loop(s) with other miRNAs such as miR-145-5p, and suppression of diverse gene targets associated with cell cycle dynamics not previously drug treatable in MPM clinical studies. Our results suggest a potential pathophysiologic role for and therapeutic significance of miR-215-5p in MPM.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Mesotelioma/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/mortalidade , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Modelos Biológicos , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Transl Oncol ; 12(6): 859-870, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31054476

RESUMO

Therapies against malignant pleural mesothelioma (MPM) have yielded disappointing results, in part, because pathologic mechanisms remain obscure. In searching for rational molecular targets, we identified metadherin (MTDH), a multifunctional gene associated with several tumor types but previously unrecognized in MPM. Cox proportional hazards regression analysis delineated associations between higher MTDH expression and lower patient survival from three independent MPM cohorts (n = 349 patients). Through in vitro assays with overexpression and downregulation constructs in MPM cells, we characterized the role of MTDH. We confirmed in vivo the phenotype of altered MTDH expression in a murine xenograft model. Transcriptional regulators of MTDH were identified by chromatin immunoprecipitation. Overexpression of both MTDH mRNA (12-fold increased) and protein levels was observed in tumor tissues. MTDH stable overexpression significantly augmented proliferation, invasiveness, colony formation, chemoresistance, and an antiapoptosis phenotype, while its suppression showed opposite effects in MPM cells. Interestingly, NF-κB and c-Myc (in a feed-forward loop motif) contributed to modulating MTDH expression. Knockdown of MTDH expression profoundly retarded xenograft tumor growth. Thus, our findings support the notion that MTDH integrates upstream signals from certain transcription factors and mediates pathogenic interactions contributing to MPM traits. MTDH represents a new MPM-associated gene that can contribute to insights of MPM biology and, as such, suggest other treatment strategies.

10.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706548

RESUMO

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Humanos , Camundongos , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
11.
Transl Lung Cancer Res ; 6(3): 248-258, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28713670

RESUMO

Malignant pleural mesothelioma (MPM) is a biologically unusual, highly aggressive cancer that defies current multimodality treatments. Epidemiologic data suggest that this malignancy has not abated despite increasingly strict environmental regulations on asbestos, the putative causative agent for sporadic cases. An incomplete understanding of all the factors mechanistically driving mesothelioma is largely responsible for the current lack of curative treatments. Many approaches have been employed to ascertain the step-by-step molecular events involved in mesothelioma oncogenesis including in vitro, small animal in vivo, and human experimental models; though clearly defined, druggable mechanisms still are elusive. Importantly, the foundation of the latest accepted model of tumor initiation is derived from in vitro systems. A thorough review of in vitro mesothelioma oncogenesis models may suggest further opportunities for discovery.

12.
Exp Mol Pathol ; 99(3): 441-4, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26321246

RESUMO

The cholesterol-metabolizing enzyme sterol O-acetyltransferase (SOAT1) is implicated in an increasing number of biological and pathological processes in a number of organ systems, including the differentiation of the hair shaft. While the functional and regulatory mechanisms underlying these diverse functional roles remain poorly understood, the compartment of the hair shaft known as medulla, affected by mutations in Soat1, may serve as a suitable model for defining some of these mechanisms. A comparative analysis of mRNA and protein expression patterns of Soat1/SOAT1 and the transcriptional regulator Hoxc13/HOXC13 in postnatal skin of FVB/NTac mice indicated co-expression in the most proximal cells of the differentiating medulla. This finding combined with the significant downregulation of Soat1 expression in postnatal skin of both Hoxc13 gene-targeted and transgenic mice based on previously reported DNA microarray results suggests a potential regulatory relationship between the two genes. Non-detectable SOAT1 expression in the defective hair follicle medulla of Hoxc13(tm1Mrc) mice and evidence for binding of HOXC13 to the Soat1 upstream control region obtained by ChIP assay suggests that Soat1 is a downstream regulatory target for HOXC13 during medulla differentiation.


Assuntos
Regulação da Expressão Gênica/genética , Cabelo/metabolismo , Proteínas de Homeodomínio/metabolismo , Esterol O-Aciltransferase/genética , Animais , Diferenciação Celular , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pele/metabolismo , Pele/patologia
13.
Cell ; 159(7): 1524-37, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25483777

RESUMO

The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.


Assuntos
Linfócitos B/metabolismo , Carcinogênese , Citidina Desaminase/genética , Elementos Facilitadores Genéticos , Animais , Dano ao DNA , Humanos , Linfoma/metabolismo , Camundongos
14.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360274

RESUMO

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Regulon , Animais , Linhagem da Célula , Células Cultivadas , Ilhas de CpG , Metilação de DNA , Técnicas Genéticas , Camundongos , Especificidade de Órgãos , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Cell Rep ; 3(5): 1678-1689, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23707059

RESUMO

The "CTCF code" hypothesis posits that CTCF pleiotropic functions are driven by recognition of diverse sequences through combinatorial use of its 11 zinc fingers (ZFs). This model, however, is supported by in vitro binding studies of a limited number of sequences. To study CTCF multivalency in vivo, we define ZF binding requirements at ∼50,000 genomic sites in primary lymphocytes. We find that CTCF reads sequence diversity through ZF clustering. ZFs 4-7 anchor CTCF to ∼80% of targets containing the core motif. Nonconserved flanking sequences are recognized by ZFs 1-2 and ZFs 8-11 clusters, which also stabilize CTCF broadly. Alternatively, ZFs 9-11 associate with a second phylogenetically conserved upstream motif at ∼15% of its sites. Individually, ZFs increase overall binding and chromatin residence time. Unexpectedly, we also uncovered a conserved downstream DNA motif that destabilizes CTCF occupancy. Thus, CTCF associates with a wide array of DNA modules via combinatorial clustering of its 11 ZFs.


Assuntos
Genoma , Proteínas Repressoras/metabolismo , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC , Mapeamento Cromossômico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivos de Nucleotídeos , Fotodegradação , Proteínas Repressoras/química , Proteínas Repressoras/genética , Dedos de Zinco/genética
16.
Biol Open ; 1(5): 430-5, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213434

RESUMO

The distinct topographic Hox expression patterns observed in vascular smooth muscle cells (VSMCs) of the adult cardiovascular system suggest that these transcriptional regulators are critical for maintaining region-specific physiological properties of blood vessels. To test this proposition, we expanded the vascular Hoxc11 expression domain normally restricted to the lower limbs by utilizing an innovative integrated tetracycline regulatory system and Transgelin promoter elements to induce Hoxc11 expression universally in VSMCs of transgenic mice. Ectopic Hoxc11 expression in carotid arteries, aortic arch and descending aorta resulted in drastic vessel wall remodeling involving elastic laminae fragmentation, medial smooth muscle cell loss, and intimal lesion formation. None of these alterations were observed upon induction of Hoxc11 transgene expression in the femoral artery, i.e. the natural Hoxc11 activity domain, although this vessel was greatly enlarged, comparable to the topographically restricted vascular changes seen in Hoxc11(-/-) mice. To begin defining Hoxc11-controlled pathways of vascular remodeling, we performed immunolabeling studies in conjunction with co-transfection and chromatin immunoprecipitation (ChIP) assays using mouse vascular smooth muscle (MOVAS) cells. The results suggest direct transcriptional control of two members of the matrix metalloproteinase (Mmp) family, including Mmp2 and Mmp9 that are known as key players in the inception and progression of vascular remodeling events. In summary, the severe vascular abnormalities resulting from the induced dysregulated expression of a Hox gene with regional vascular patterning functions suggest that proper Hox function and regulation is critical for maintaining vascular functional integrity.

17.
J Invest Dermatol ; 131(4): 828-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21191399

RESUMO

Among the Hox genes, homeobox C13 (Hoxc13) has been shown to be essential for proper hair shaft differentiation, as Hoxc13 gene-targeted (Hoxc13(tm1Mrc)) mice completely lack external hair. Because of the remarkable overt phenotypic parallels to the Foxn1(nu) (nude) mutant mice, we sought to determine whether Hoxc13 and forkhead box N1 (Foxn1) might act in a common pathway of hair follicle (HF) differentiation. We show that the alopecia exhibited by both the Hoxc13(tm1Mrc) and Foxn1(nu) mice is because of strikingly similar defects in hair shaft differentiation and that both mutants suffer from a severe nail dystrophy. These phenotypic similarities are consistent with the extensive overlap between Hoxc13 and Foxn1 expression patterns in the HF and the nail matrix. Furthermore, DNA microarray analysis of skin from Hoxc13(tm1Mrc) mice identified Foxn1 as significantly downregulated along with numerous hair keratin genes. This Foxn1 downregulation apparently reflects the loss of direct transcriptional control by HOXC13 as indicated by our results obtained through co-transfection and chromatin immunoprecipitation (ChIP) assays. As presented in the discussion, these data support a regulatory model of keratinocyte differentiation in which HOXC13-dependent activation of Foxn1 is part of a regulatory cascade controlling the expression of terminal differentiation markers.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Casco e Garras/fisiologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/patologia , Casco e Garras/crescimento & desenvolvimento , Casco e Garras/patologia , Queratinócitos/patologia , Queratinócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Transfecção
18.
BMC Dev Biol ; 8: 93, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826643

RESUMO

BACKGROUND: The concept of specifying positional information in the adult cardiovascular system is largely unexplored. While the Hox transcriptional regulators have to be viewed as excellent candidates for assuming such a role, little is known about their presumptive cardiovascular control functions and in vivo expression patterns. RESULTS: We demonstrate that conventional reporter gene analysis in transgenic mice is a useful approach for defining highly complex Hox expression patterns in the adult vascular network as exemplified by our lacZ reporter gene models for Hoxa3 and Hoxc11. These mice revealed expression in subsets of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) located in distinct regions of the vasculature that roughly correspond to the embryonic expression domains of the two genes. These reporter gene patterns were validated as authentic indicators of endogenous gene expression by immunolabeling and PCR analysis. Furthermore, we show that persistent reporter gene expression in cultured cells derived from vessel explants facilitates in vitro characterization of phenotypic properties as exemplified by the differential response of Hoxc11-lacZ-positive versus-negative cells in migration assays and to serum. CONCLUSION: The data support a conceptual model of Hox-specified positional identities in adult blood vessels, which is of likely relevance for understanding the mechanisms underlying regional physiological diversities in the cardiovascular system. The data also demonstrate that conventional Hox reporter gene mice are useful tools for visualizing complex Hox expression patterns in the vascular network that might be unattainable otherwise. Finally, these mice are a resource for the isolation and phenotypic characterization of specific subpopulations of vascular cells marked by distinct Hox expression profiles.


Assuntos
Sistema Cardiovascular/metabolismo , Genes Homeobox/fisiologia , Proteínas de Homeodomínio/genética , Miócitos de Músculo Liso/metabolismo , Sequência de Aminoácidos , Animais , Sistema Cardiovascular/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/biossíntese , Humanos , Óperon Lac/genética , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Dados de Sequência Molecular , Ratos , Técnicas de Cultura de Tecidos , Transcrição Gênica/fisiologia
19.
J Biol Chem ; 281(39): 29245-55, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16835220

RESUMO

It is increasingly evident that the molecular mechanisms underlying hair follicle differentiation and cycling recapitulate principles of embryonic patterning and organ regeneration. Here we used Hoxc13-overexpressing transgenic mice (also known as GC13 mice), known to develop severe hair growth defects and alopecia, as a tool for defining pathways of hair follicle differentiation. Gene array analysis performed with RNA from postnatal skin revealed differential expression of distinct subsets of genes specific for cells of the three major hair shaft compartments (cuticle, cortex, and medulla) and their precursors. This finding correlates well with the structural defects observed in each of these compartments and implicates Hoxc13 in diverse pathways of hair follicle differentiation. The group of medulla-specific genes was particularly intriguing because this included the developmentally regulated transcription factor-encoding gene Foxq1 that is altered in the medulladefective satin mouse hair mutant. We provide evidence that Foxq1 is a downstream target for Hoxc13 based on DNA binding studies as well as co-transfection and chromatin immunoprecipitation assays. Expression of additional medulla-specific genes down-regulated upon overexpression of Hoxc13 requires functional Foxq1 as their expression is ablated in hair follicles of satin mice. Combined, these results demonstrate that Hoxc13 and Foxq1 control medulla differentiation through a common regulatory pathway. The apparent regulatory interactions between members of the mammalian Hox and Fox gene families shown here may establish a paradigm for "cross-talk" between these two conserved regulatory gene families in different developmental contexts including embryonic patterning as well as organ development and renewal.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/anatomia & histologia , Folículo Piloso/metabolismo , Proteínas de Homeodomínio/metabolismo , Mutação , Células 3T3 , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Folículo Piloso/ultraestrutura , Camundongos , Modelos Anatômicos , Modelos Genéticos , Hibridização de Ácido Nucleico
20.
J Investig Dermatol Symp Proc ; 10(3): 238-42, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16382673

RESUMO

Members of the Hox gene family of transcriptional regulators are believed to play essential roles in hair follicle differentiation, although little is known about the molecular mechanisms mediating these putative control functions. Transgenic mice overexpressing Hoxc13 in hair follicles (GC13 mice) exhibit complex phenotypic alterations including hair shaft defects and alopecia, as well as severe epidermal abnormalities. To identify some of the genetic pathways affected by Hoxc13 overexpression in hair, we performed large-scale differential gene expression analysis on the skin of 5-d GC13 versus normal FVB mice using DNA chip assays. A surprising result of these experiments was the identification of the epididymal cysteine-rich secretory protein 1 (Crisp1) gene as one of the genes with the greatest expression differential, in this case with greater than 20-fold downregulation in skin from GC13 mice. Crisp1 encodes a secreted protein that has originally been found to be abundantly expressed in the epididymis, where it plays a role in sperm maturation. We have localized Crisp1 mRNA in 5-d postnatal murine scapular skin by in situ hybridization, showing its expression to be restricted to the medulla of the hair shaft. Furthermore, we provide evidence for specific interaction of Hoxc13 with at least one cognate binding site found in the Crisp1 promoter region, thus supporting the concept of a Hoxc13/Crisp1 regulatory relationship. In summary, these data establish the hair as a novel site for Crisp1 expression where its functional role remains to be determined.


Assuntos
Proteínas Secretadas pelo Epidídimo/genética , Folículo Piloso/metabolismo , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Animais , Regulação para Baixo , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Epididimo/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...