Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895537

RESUMO

Link prediction plays an important role in the research of complex networks. Its task is to predict missing links or possible new links in the future via existing information in the network. In recent years, many powerful link prediction algorithms have emerged, which have good results in prediction accuracy and interpretability. However, the existing research still cannot clearly point out the relationship between the characteristics of the network and the mechanism of link generation, and the predictability of complex networks with different features remains to be further analyzed. In view of this, this article proposes the corresponding link prediction indexes Reg, DFPA and LW on a regular network, scale-free network and small-world network, respectively, and studies their prediction properties on these three network models. At the same time, we propose a parametric hybrid index HEM and compare the prediction accuracies of HEM and many similarity-based indexes on real-world networks. The experimental results show that HEM performs better than other Birnbaum-Saunders. In addition, we study the factors that play a major role in the prediction of HEM and analyze their relationship with the characteristics of real-world networks. The results show that the predictive properties of factors are closely related to the features of networks.

2.
IEEE Trans Vis Comput Graph ; 28(1): 65-75, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587048

RESUMO

Lithium ion batteries (LIBs) are widely used as important energy sources for mobile phones, electric vehicles, and drones. Experts have attempted to replace liquid electrolytes with solid electrolytes that have wider electrochemical window and higher stability due to the potential safety risks, such as electrolyte leakage, flammable solvents, poor thermal stability, and many side reactions caused by liquid electrolytes. However, finding suitable alternative materials using traditional approaches is very difficult due to the incredibly high cost in searching. Machine learning (ML)-based methods are currently introduced and used for material prediction. However, learning tools designed for domain experts to conduct intuitive performance comparison and analysis of ML models are rare. In this case, we propose an interactive visualization system for experts to select suitable ML models and understand and explore the predication results comprehensively. Our system uses a multifaceted visualization scheme designed to support analysis from various perspectives, such as feature distribution, data similarity, model performance, and result presentation. Case studies with actual lab experiments have been conducted by the experts, and the final results confirmed the effectiveness and helpfulness of our system.

3.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924465

RESUMO

Accurate segmentation of entity categories is the critical step for 3D scene understanding. This paper presents a fast deep neural network model with Dense Conditional Random Field (DCRF) as a post-processing method, which can perform accurate semantic segmentation for 3D point cloud scene. On this basis, a compact but flexible framework is introduced for performing segmentation to the semantics of point clouds concurrently, contribute to more precise segmentation. Moreover, based on semantics labels, a novel DCRF model is elaborated to refine the result of segmentation. Besides, without any sacrifice to accuracy, we apply optimization to the original data of the point cloud, allowing the network to handle fewer data. In the experiment, our proposed method is conducted comprehensively through four evaluation indicators, proving the superiority of our method.

4.
Sensors (Basel) ; 20(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081065

RESUMO

The development of the Internet has made social communication increasingly important for maintaining relationships between people. However, advertising and fraud are also growing incredibly fast and seriously affect our daily life, e.g., leading to money and time losses, trash information, and privacy problems. Therefore, it is very important to detect anomalies in social networks. However, existing anomaly detection methods cannot guarantee the correct rate. Besides, due to the lack of labeled data, we also cannot use the detection results directly. In other words, we still need human analysts in the loop to provide enough judgment for decision making. To help experts analyze and explore the results of anomaly detection in social networks more objectively and effectively, we propose a novel visualization system, egoDetect, which can detect the anomalies in social communication networks efficiently. Based on the unsupervised anomaly detection method, the system can detect the anomaly without training and get the overview quickly. Then we explore an ego's topology and the relationship between egos and alters by designing a novel glyph based on the egocentric network. Besides, it also provides rich interactions for experts to quickly navigate to the interested users for further exploration. We use an actual call dataset provided by an operator to evaluate our system. The result proves that our proposed system is effective in the anomaly detection of social networks.


Assuntos
Comunicação , Rede Social , Segurança Computacional , Humanos , Privacidade
5.
Sensors (Basel) ; 16(12)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27999398

RESUMO

Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.


Assuntos
Algoritmos , Comportamento , Mineração de Dados , Mídias Sociais , Cidades , Retroalimentação , Humanos , Estudantes , Fatores de Tempo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...