RESUMO
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/análise , Humanos , Sais/química , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Capturing short-lived intermediates at the molecular level is key to understanding the mechanism and dynamics of chemical reactions. Here, we have developed a paper-in-tip bipolar electrolytic electrospray mass spectrometry platform, in which a piece of triangular conductive paper incorporated into a plastic pipette tip serves not only as an electrospray emitter but also as a bipolar electrode (BPE), thus triggering both electrospray and electrolysis simultaneously upon application of a high voltage. The bipolar electrolysis induces a pair of redox reactions on both sides of BPE, enabling both electro-oxidation and electro-reduction processes regardless of the positive or negative ion mode, thus facilitating access to complementary structural information for mechanism elucidation. Our method enables real-time monitoring of transient intermediates (such as N,N-dimethylaniline radical cation, dopamine o-quinone (DAQ) and sulfenic acid with half-lives ranging from microseconds to minutes) and transient processes (such as DAQ cyclization with a rate constant of 0.15â s-1). This platform also provides key insights into electrocatalytic reactions such as Fe (III)-catalyzed dopamine oxidation to quinone species at physiological pH for neuromelanin formation.