Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Cells ; 13(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39195232

RESUMO

From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.


Assuntos
Cardiomegalia , Miócitos Cardíacos , Fatores de Transcrição , Animais , Ratos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Dexametasona/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Tri-Iodotironina/farmacologia , Proteínas de Sinalização YAP/metabolismo
2.
Circulation ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155863

RESUMO

BACKGROUND: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS: Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in CalmN98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS: These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.

3.
Nat Commun ; 15(1): 5929, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009604

RESUMO

Human iPSC-derived cardiomyocytes (hiPSC-CMs) have proven invaluable for cardiac disease modeling and regeneration. Challenges with quality, inter-batch consistency, cryopreservation and scale remain, reducing experimental reproducibility and clinical translation. Here, we report a robust stirred suspension cardiac differentiation protocol, and we perform extensive morphological and functional characterization of the resulting bioreactor-differentiated iPSC-CMs (bCMs). Across multiple different iPSC lines, the protocol produces 1.2E6/mL bCMs with ~94% purity. bCMs have high viability after cryo-recovery (>90%) and predominantly ventricular identity. Compared to standard monolayer-differentiated CMs, bCMs are more reproducible across batches and have more mature functional properties. The protocol also works with magnetically stirred spinner flasks, which are more economical and scalable than bioreactors. Minor protocol modifications generate cardiac organoids fully in suspension culture. These reproducible, scalable, and resource-efficient approaches to generate iPSC-CMs and organoids will expand their applications, and our benchmark data will enable comparison to cells produced by other cardiac differentiation protocols.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Organoides/citologia , Técnicas de Cultura de Células/métodos , Reprodutibilidade dos Testes , Células Cultivadas , Criopreservação/métodos
4.
bioRxiv ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39026854

RESUMO

Brown adipose tissue (BAT) is mammals' primary non-shivering thermogenesis organ, and the molecular mechanisms regulating BAT growth and adipogenesis are largely unknown. The Hippo-YAP pathway has been well-known for controlling organ size, and Vestigial like 4 (VGLL4) is a transcriptional regulator that modulates the Hippo-YAP pathway by competing against YAP for binding to TEAD proteins. In this study, we dissected the function of VGLL4 in regulating BAT development. We generated a conventional Vgll4 mutant mouse line, in which the two Tondu (TDU) domains of VGLL4 were disrupted. We found that deletion of the TDU domains of VGLL4 resulted in perinatal lethality and paucity of the interscapular BAT. Histological and magnetic resonance imaging studies confirmed that the adipogenesis of BAT was impaired in Vgll4 mutants. Adeno-associated virus (AAV) mediated, brown adipocyte-specific overexpression of VGLL4 increased BAT volume and protected the adult male mice from acute cold stress. Genomic studies suggest that VGLL4/TEAD1 complex directly regulates the myogenic and adipogenic gene expression programs of BAT. In conclusion, our data identify VGLL4 as a previously unrecognized adipogenesis factor that regulates classical BAT development.

5.
Acta Pharmacol Sin ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043970

RESUMO

Z-discs are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-disc-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-disc proteome in vivo. We found palmdelphin (PALMD) as a novel Z-disc-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific Palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed the transverse tubule (T-tubule)-sarcoplasmic reticulum (SR) ultrastructures, which formed the Z-disc-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with the reduction of nexilin (NEXN), a crucial Z-disc-associated protein that is essential for both Z-disc and JMC structures and functions. PALMD interacted with NEXN and enhanced its protein stability while the Nexn mRNA level was not affected. AAV-based NEXN addback rescued the exacerbated cardiac injury in isoproterenol-treated PALMD-depleted mice. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis.

6.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853821

RESUMO

Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.

7.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38864216

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Assuntos
Cardiomegalia , Camundongos Knockout , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Remodelação Ventricular
8.
J Clin Invest ; 134(13)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743498

RESUMO

One of the features of pathological cardiac hypertrophy is enhanced translation and protein synthesis. Translational inhibition has been shown to be an effective means of treating cardiac hypertrophy, although system-wide side effects are common. Regulators of translation, such as cardiac-specific long noncoding RNAs (lncRNAs), could provide new, more targeted therapeutic approaches to inhibit cardiac hypertrophy. Therefore, we generated mice lacking a previously identified lncRNA named CARDINAL to examine its cardiac function. We demonstrate that CARDINAL is a cardiac-specific, ribosome-associated lncRNA and show that its expression was induced in the heart upon pathological cardiac hypertrophy and that its deletion in mice exacerbated stress-induced cardiac hypertrophy and augmented protein translation. In contrast, overexpression of CARDINAL attenuated cardiac hypertrophy in vivo and in vitro and suppressed hypertrophy-induced protein translation. Mechanistically, CARDINAL interacted with developmentally regulated GTP-binding protein 1 (DRG1) and blocked its interaction with DRG family regulatory protein 1 (DFRP1); as a result, DRG1 was downregulated, thereby modulating the rate of protein translation in the heart in response to stress. This study provides evidence for the therapeutic potential of targeting cardiac-specific lncRNAs to suppress disease-induced translational changes and to treat cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia , Biossíntese de Proteínas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Humanos , Camundongos Knockout , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
9.
Circulation ; 150(4): 283-298, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38752340

RESUMO

BACKGROUND: Familial hypertrophic cardiomyopathy has severe clinical complications of heart failure, arrhythmia, and sudden cardiac death. Heterozygous single nucleotide variants (SNVs) of sarcomere genes such as MYH7 are the leading cause of this type of disease. CRISPR-Cas13 (clustered regularly interspaced short palindromic repeats and their associated protein 13) is an emerging gene therapy approach for treating genetic disorders, but its therapeutic potential in genetic cardiomyopathy remains unexplored. METHODS: We developed a sensitive allelic point mutation reporter system to screen the mutagenic variants of Cas13d. On the basis of Cas13d homology structure, we rationally designed a series of Cas13d variants and obtained a high-precision Cas13d variant (hpCas13d) that specifically cleaves the MYH7 variant RNAs containing 1 allelic SNV. We validated the high precision and low collateral cleavage activity of hpCas13d through various in vitro assays. We generated 2 HCM mouse models bearing distinct MYH7 SNVs and used adenovirus-associated virus serotype 9 to deliver hpCas13d specifically to the cardiomyocytes. We performed a large-scale library screening to assess the potency of hpCas13d in resolving 45 human MYH7 allelic pathogenic SNVs. RESULTS: Wild-type Cas13d cannot distinguish and specifically cleave the heterozygous MYH7 allele with SNV. hpCas13d, with 3 amino acid substitutions, had minimized collateral RNase activity and was able to resolve various human MYH7 pathological sequence variations that cause hypertrophic cardiomyopathy. In vivo application of hpCas13d to 2 hypertrophic cardiomyopathy models caused by distinct human MYH7 analogous sequence variations specifically suppressed the altered allele and prevented cardiac hypertrophy. CONCLUSIONS: Our study unveils the great potential of CRISPR-Cas nucleases with high precision in treating inheritable cardiomyopathy and opens a new avenue for therapeutic management of inherited cardiac diseases.


Assuntos
Sistemas CRISPR-Cas , Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Cadeias Pesadas de Miosina , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Humanos , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Alelos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Terapia Genética/métodos
12.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464269

RESUMO

In the last decade human iPSC-derived cardiomyocytes (hiPSC-CMs) proved to be valuable for cardiac disease modeling and cardiac regeneration, yet challenges with scale, quality, inter-batch consistency, and cryopreservation remain, reducing experimental reproducibility and limiting clinical translation. Here, we report a robust cardiac differentiation protocol that uses Wnt modulation and a stirred suspension bioreactor to produce on average 124 million hiPSC-CMs with >90% purity using a variety of hiPSC lines (19 differentiations; 10 iPSC lines). After controlled freeze and thaw, bioreactor-derived CMs (bCMs) showed high viability (>90%), interbatch reproducibility in cellular morphology, function, drug response and ventricular identity, which was further supported by single cell transcriptomes. bCMs on microcontact printed substrates revealed a higher degree of sarcomere maturation and viability during long-term culture compared to monolayer-derived CMs (mCMs). Moreover, functional investigation of bCMs in 3D engineered heart tissues showed earlier and stronger force production during long-term culture, and robust pacing capture up to 4 Hz when compared to mCMs. bCMs derived from this differentiation protocol will expand the applications of hiPSC-CMs by providing a reproducible, scalable, and resource efficient method to generate cardiac cells with well-characterized structural and functional properties superior to standard mCMs.

13.
Nat Genet ; 56(3): 420-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378865

RESUMO

Rare coding mutations cause ∼45% of congenital heart disease (CHD). Noncoding mutations that perturb cis-regulatory elements (CREs) likely contribute to the remaining cases, but their identification has been problematic. Using a lentiviral massively parallel reporter assay (lentiMPRA) in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we functionally evaluated 6,590 noncoding de novo variants (ncDNVs) prioritized from the whole-genome sequencing of 750 CHD trios. A total of 403 ncDNVs substantially affected cardiac CRE activity. A majority increased enhancer activity, often at regions with undetectable reference sequence activity. Of ten DNVs tested by introduction into their native genomic context, four altered the expression of neighboring genes and iPSC-CM transcriptional state. To prioritize future DNVs for functional testing, we used the MPRA data to develop a regression model, EpiCard. Analysis of an independent CHD cohort by EpiCard found enrichment of DNVs. Together, we developed a scalable system to measure the effect of ncDNVs on CRE activity and deployed it to systematically assess the contribution of ncDNVs to CHD.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiopatias Congênitas/genética , Sequências Reguladoras de Ácido Nucleico , Mutação , Miócitos Cardíacos
14.
Circ Res ; 134(5): 529-546, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348657

RESUMO

BACKGROUND: Mature endothelial cells (ECs) are heterogeneous, with subtypes defined by tissue origin and position within the vascular bed (ie, artery, capillary, vein, and lymphatic). How this heterogeneity is established during the development of the vascular system, especially arteriovenous specification of ECs, remains incompletely characterized. METHODS: We used droplet-based single-cell RNA sequencing and multiplexed error-robust fluorescence in situ hybridization to define EC and EC progenitor subtypes from E9.5, E12.5, and E15.5 mouse embryos. We used trajectory inference to analyze the specification of arterial ECs (aECs) and venous ECs (vECs) from EC progenitors. Network analysis identified candidate transcriptional regulators of arteriovenous differentiation, which we tested by CRISPR (clustered regularly interspaced short palindromic repeats) loss of function in human-induced pluripotent stem cells undergoing directed differentiation to aECs or vECs (human-induced pluripotent stem cell-aECs or human-induced pluripotent stem cell-vECs). RESULTS: From the single-cell transcriptomes of 7682 E9.5 to E15.5 ECs, we identified 19 EC subtypes, including Etv2+Bnip3+ EC progenitors. Spatial transcriptomic analysis of 15 448 ECs provided orthogonal validation of these EC subtypes and established their spatial distribution. Most embryonic ECs were grouped by their vascular-bed types, while ECs from the brain, heart, liver, and lung were grouped by their tissue origins. Arterial (Eln, Dkk2, Vegfc, and Egfl8), venous (Fam174b and Clec14a), and capillary (Kcne3) marker genes were identified. Compared with aECs, embryonic vECs and capillary ECs shared fewer markers than their adult counterparts. Early capillary ECs with venous characteristics functioned as a branch point for differentiation of aEC and vEC lineages. CONCLUSIONS: Our results provide a spatiotemporal map of embryonic EC heterogeneity at single-cell resolution and demonstrate that the diversity of ECs in the embryo arises from both tissue origin and vascular-bed position. Developing aECs and vECs share common venous-featured capillary precursors and are regulated by distinct transcriptional regulatory networks.


Assuntos
Células Endoteliais , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Adulto , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Artérias , Encéfalo , Veias
16.
Circulation ; 149(15): 1205-1230, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38189150

RESUMO

BACKGROUND: The relationship between heart failure (HF) and atrial fibrillation (AF) is clear, with up to half of patients with HF progressing to AF. The pathophysiological basis of AF in the context of HF is presumed to result from atrial remodeling. Upregulation of the transcription factor FOG2 (friend of GATA2; encoded by ZFPM2) is observed in human ventricles during HF and causes HF in mice. METHODS: FOG2 expression was assessed in human atria. The effect of adult-specific FOG2 overexpression in the mouse heart was evaluated by whole animal electrophysiology, in vivo organ electrophysiology, cellular electrophysiology, calcium flux, mouse genetic interactions, gene expression, and genomic function, including a novel approach for defining functional transcription factor interactions based on overlapping effects on enhancer noncoding transcription. RESULTS: FOG2 is significantly upregulated in the human atria during HF. Adult cardiomyocyte-specific FOG2 overexpression in mice caused primary spontaneous AF before the development of HF or atrial remodeling. FOG2 overexpression generated arrhythmia substrate and trigger in cardiomyocytes, including calcium cycling defects. We found that FOG2 repressed atrial gene expression promoted by TBX5. FOG2 bound a subset of GATA4 and TBX5 co-bound genomic locations, defining a shared atrial gene regulatory network. FOG2 repressed TBX5-dependent transcription from a subset of co-bound enhancers, including a conserved enhancer at the Atp2a2 locus. Atrial rhythm abnormalities in mice caused by Tbx5 haploinsufficiency were rescued by Zfpm2 haploinsufficiency. CONCLUSIONS: Transcriptional changes in the atria observed in human HF directly antagonize the atrial rhythm gene regulatory network, providing a genomic link between HF and AF risk independent of atrial remodeling.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Fibrilação Atrial/genética , Redes Reguladoras de Genes , Cálcio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Átrios do Coração , Insuficiência Cardíaca/genética , Genômica , Fator de Transcrição GATA4/genética
17.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106146

RESUMO

Z-lines are core ultrastructural organizers of cardiomyocytes that modulate many facets of cardiac pathogenesis. Yet a comprehensive proteomic atlas of Z-line-associated components remain incomplete. Here, we established an adeno-associated virus (AAV)-delivered, cardiomyocyte-specific, proximity-labeling approach to characterize the Z-line proteome in vivo. We found palmdelphin (PALMD) as a novel Z-line-associated protein in both adult murine cardiomyocytes and human pluripotent stem cell-derived cardiomyocytes. Germline and cardiomyocyte-specific palmd knockout mice were grossly normal at baseline but exhibited compromised cardiac hypertrophy and aggravated cardiac injury upon long-term isoproterenol treatment. By contrast, cardiomyocyte-specific PALMD overexpression was sufficient to mitigate isoproterenol-induced cardiac injury. PALMD ablation perturbed transverse tubules (T-tubules) and their association with sarcoplasmic reticulum, which formed the Z-line-associated junctional membrane complex (JMC) essential for calcium handling and cardiac function. These phenotypes were associated with disrupted localization of T-tubule markers caveolin-3 (CAV3) and junctophilin-2 (JPH2) and the reduction of nexilin (NEXN) protein, a crucial Z-line-associated protein that is essential for both Z-line and JMC structures and functions. PALMD was found to interact with NEXN and enhance its protein stability while the Nexn mRNA level was not affected. Together, this study discovered PALMD as a potential target for myocardial protection and highlighted in vivo proximity proteomics as a powerful approach to nominate novel players regulating cardiac pathogenesis. Highlights: In vivo proximity proteomics uncover novel Z-line components that are undetected in in vitro proximity proteomics in cardiomyocytes.PALMD is a novel Z-line-associated protein that is dispensable for baseline cardiomyocyte function in vivo.PALMD mitigates cardiac dysfunction and myocardial injury after repeated isoproterenol insults.PALMD stabilizes NEXN, an essential Z-line-associated regulator of the junctional membrane complex and cardiac systolic function.

18.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37905452

RESUMO

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Interferente Pequeno/metabolismo , Biossíntese de Proteínas , Proliferação de Células , Regeneração , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
19.
Stem Cell Reports ; 18(9): 1811-1826, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37595583

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/ß-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/ß-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/ß-catenin signaling in a human model of ACM.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , beta Catenina/genética , Sinalização do Cálcio , Junções Intercelulares , Miócitos Cardíacos , Placofilinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...