Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675589

RESUMO

The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.


Assuntos
Itraconazol , Nanopartículas , Solubilidade , Tensoativos , Itraconazol/química , Itraconazol/farmacocinética , Itraconazol/administração & dosagem , Nanopartículas/química , Humanos , Células CACO-2 , Animais , Ratos , Administração Oral , Tensoativos/química , Masculino , Disponibilidade Biológica , Tamanho da Partícula , Difração de Raios X , Varredura Diferencial de Calorimetria , Ácido Cólico/química
2.
Int J Biol Macromol ; 262(Pt 2): 130043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340921

RESUMO

Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Portadores de Fármacos/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38082030

RESUMO

Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.

4.
Int J Nanomedicine ; 18: 3407-3428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377983

RESUMO

Introduction: Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods: In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results: The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion: This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Solubilidade , Linhagem Celular Tumoral
5.
Int J Nanomedicine ; 17: 1323-1341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345783

RESUMO

Introduction: Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods: Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results: The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion: This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.


Assuntos
Micelas , Paclitaxel , Animais , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Paclitaxel/farmacologia , Polímeros/farmacologia
6.
Pharm Biol ; 59(1): 1378-1387, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34629029

RESUMO

CONTEXT: Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet. OBJECTIVE: To investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology. MATERIALS AND METHODS: Potential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement. RESULTS: Network pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3ß, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K-Akt pathway and restored the ability of mitochondrial biogenesis. DISCUSSION AND CONCLUSIONS: Our study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.


Assuntos
Acetaminofen/intoxicação , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Chrysanthemum/química , Extratos Vegetais/farmacologia , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Relação Dose-Resposta a Droga , Overdose de Drogas , Flores , Masculino , Farmacologia em Rede , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley
7.
Int J Pharm ; 610: 121160, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624446

RESUMO

The multi-drug resistance of Pseudomonas aeruginosa is an overwhelming cause of terminal and persistent lung infections in cystic fibrosis (CF) patients. Antimicrobial synergy has been shown for colistin and ivacaftor, and our study designed a relatively high drug-loading dry powder inhaler formulation containing nanoparticles of ivacaftor and colistin. The ivacaftor-colistin nanosuspensions (Iva-Col-NPs) were prepared by the anti-solvent method with different stabilizers. Based on the aggregation data, the formulation 7 (F7) with DSPG-PEG-OMe as the stabilizer was selected for further studies. The F7 consisted of ivacaftor, colistin and DSPG-PEG-OMe with a mass ratio of 1:1:1. The F7 powder formulation was developed using the ultrasonic spray-freeze-drying method and exhibited a rough surface with relatively high fine particle fraction values of 61.4 ± 3.4% for ivacaftor and 63.3 ± 3.3% for colistin, as well as superior emitted dose of 97.8 ± 0.3% for ivacaftor and 97.6 ± 0.5% for colistin. The F7 showed very significant dissolution improvement for poorly water soluble ivacaftor than the physical mixture. Incorporating two drugs in a single microparticle with synchronized dissolution and superior aerosol performance will maximize the synergy and bioactivity of those two drugs. Minimal cytotoxicity in Calu-3 human lung epithelial cells and enhanced antimicrobial activity against colistin-resistant P. aeruginosa suggested that our formulation has potential to improve the treatment of CF patients with lung infections.


Assuntos
Aminofenóis/administração & dosagem , Colistina/administração & dosagem , Sistemas de Liberação de Fármacos por Nanopartículas , Infecções por Pseudomonas , Quinolonas/administração & dosagem , Administração por Inalação , Aerossóis/administração & dosagem , Antibacterianos/administração & dosagem , Linhagem Celular , Combinação de Medicamentos , Inaladores de Pó Seco , Humanos , Pulmão , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
8.
ACS Omega ; 6(10): 6654-6662, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748578

RESUMO

Apolipoprotein E4 (ApoE4) is the main genetic risk factor for Alzheimer's disease (AD), but the exact way in which it causes AD remains unclear. Curcumin is considered to have good therapeutic potential for AD, but its mechanism has not been clarified. This study aims to observe the effect of curcumin on ApoE4 transgenic mice and explore its possible molecular mechanism. Eight-month-old ApoE4 transgenic mice were intraperitoneally injected with curcumin for 3 weeks, and the Morris water maze test was used to evaluate the cognitive ability of the mice. Immunofluorescence staining, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to examine the brain tissues of the mice. Curcumin reduced the high expression of ApoE4 and the excessive release of inflammatory factors in ApoE4 mice. In particular, the expression of marker proteins of endoplasmic reticulum (ER) stress was significantly increased in ApoE4 mice, while curcumin significantly reduced the increase in the expression of these proteins. Collectively, curcumin alleviates neuroinflammation in the brains of ApoE4 mice by inhibiting ER stress, thus improving the learning and cognitive ability of transgenic mice.

9.
Int J Pharm ; 600: 120528, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781880

RESUMO

Tumor multidrug resistance (MDR) is one of the main reasons for the failure of clinical chemotherapy. Here, a bio-responsive anti-drug-resistant polymer micelle that can respond to the reductive GSH in the tumor microenvironment (TME) for delivery of HCPT was designed. A new type of polymer with anti-drug resistance and anti-tumor effect was synthesized and used to encapsulated HCPT to form reduction-sensitive micelles (PDSAH) by a thin-film dispersion method. It is demonstrated that the micelle formulation improves the anti-tumor activity and biosafety of HCPT, and also plays a significant role in reversing the drug resistance, which contributes to inhibiting the tumor growth and prolonging the survival time of H22 tumor-bearing mice. The results indicate that this nanoplatform can serve as a flexible and powerful system for delivery of other drugs that are tolerated by tumors or bacteria.


Assuntos
Camptotecina , Micelas , Animais , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Camundongos , Polímeros
10.
Int J Pharm ; 589: 119830, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877732

RESUMO

To study the effect of quercetin (QUR) on modulating immune effects, enhancing anti-tumor activity, and reducing drug related side effects, three QUR nanosuspensions (QUR-NPs) with different particle sizes were prepared by a microprecipitation-high pressure homogenization method using mPEG-DCA as a stabilizer. Dynamic light scattering was used to analyze the particle sizes of the three QUR-NPs. The results of stability tests showed that the three QUR-NPs had good storage and plasma stability. It was confirmed that plasma protein adsorption occurred for all three QUR-NPs. The results of DSC, DTG, XRPD, and Raman spectroscopy showed that there was no significant change in the crystal form of QUR for any of the three QUR-NPs compared with the commercial QUR. The in vitro dissolution rate of the three QUR-NPs was significantly faster than that of the micronized QUR, with the dissolution rate increasing as particle size decreased. All three QUR-NPs showed stronger in vitro inhibitory activity on MCF-7 cells than the pure QUR solution, with the largest NPs having the strongest inhibitory effect. The pharmacokinetic parameters in rats showed that the MRT and t1/2 of the QUR-NPs increased as particle size increased. QUR-NPs and the pure QUR solution showed obvious anti-tumor effects against murine hepatic carcinoma H22 model in vivo, although they were not as effective as cyclophosphamide (CTX). However, the anti-tumor effect of the large QUR-NPs combined with CTX was the strongest among all the tested groups. From the results of the thymus and spleen index, it was found that the QUR-NPs could not only regulate the immunity of tumor-bearing mice, but also alleviate the immunosuppression caused by CTX and protect normal tissues, all while enhancing the anti-tumor effect. The immunomodulatory effect of the QUR-NPs on tumor-bearing mice was significantly better than that of the pure QUR solution. Therefore, nanosuspensions can be used as a new drug delivery system for QUR to assist tumor therapy and regulate immunity.


Assuntos
Nanopartículas , Quercetina , Animais , Sistemas de Liberação de Medicamentos , Humanos , Células MCF-7 , Camundongos , Tamanho da Partícula , Quercetina/farmacologia , Ratos , Suspensões
11.
Nanotechnology ; 31(16): 165102, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31899896

RESUMO

The non-specific biodistribution of traditional chemotherapeutic drugs against tumors is the key factor that causes systemic toxicity and hinders their clinical application. In this study, a reduction-sensitive polymer conjugate micelle was manufactured to achieve tumor-specific targeting, reduce toxic side-effects and improve anti-tumor activity of a natural anti-cancer drug, hydroxycamptothecin (HCPT). Therefore, HCPT was conjugated with methoxy-poly(ethylene glycol)-poly(ß-benzyl-L-aspartate) (mPEG-PBLA) by a disulfide bond or succinate bond for the first time to obtain the mPEG-PBLA-SS-HCPT (PPSH) and mPEG-PBLA-CC-HCPT (PPCH) that would form micelles after high-speed agitation and dialysis. The PPSH micelles showed an average particle size of 126.3 nm, a low polydispersity index of 0.209, and a negative surface charge of -21.1 mV zeta potential. Transmission electron microscopy showed the PPSH micelles to have spherical morphology. PPSH had a low critical micelle concentration of 1.29 µg ml-1 with high dilution stability, storage stability and reproducibility. Moreover, the particle size of the PPSH micelles had no significant change after incubation with rat plasma for 72 h, probably resulting in high long circulation in the blood. The PPSH micelles showed significant reduction sensitivity to glutathione. Their sizes increased by 403.2 nm after 24 h post-incubation, and 87.6% drug release was achieved 48 h post-incubation with 40 mM glutathione solutions. The PPSH micelles showed stronger inhibition of HepG2 cells in vitro and growth of H-22 tumor in vivo than the PPCH and HCPT solutions after intravenous injection. The accumulation of PPSH micelles in the tumor tissue contributed to the high anti-tumor effect with little side-effect on the normal tissues. The reduction-sensitive PPSH micelles were a promising carrier of HCPT and other poorly soluble anti-cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Espaço Intracelular/química , Micelas , Peptídeos/química , Polietilenoglicóis/química , Animais , Camptotecina/sangue , Camptotecina/química , Camptotecina/farmacocinética , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Dissulfetos/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Oxirredução , Tamanho da Partícula , Peptídeos/síntese química , Polietilenoglicóis/síntese química , Ratos Sprague-Dawley , Succinatos/química , Distribuição Tecidual
12.
Front Oncol ; 9: 823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508374

RESUMO

The toxicity and side effects of traditional chemotherapeutic drugs are the main causes of chemotherapy failure. To improve the specificity and selectivity of chemotherapeutic drugs for tumor cells, a novel redox-sensitive polymer prodrug, polyethylene glycol-poly (ß-benzyl-L-aspartate) (PEG-PBLA)-SS-paclitaxel (PPSP), was designed and synthesized in this study. The PPSP micelle was manufactured via high-speed dispersion stirring and dialysis. The particle size and zeta potential of this prodrug micelle were 63.77 ± 0.91 nm and -25.8 ± 3.24 mV, respectively. The micelles were uniformly distributed and presented a spherical morphology under a transmission electron microscope. In the tumor physiological environment, the particle size of the PPSP micelles and the release rate of paclitaxel (PTX) were significantly increased compared with those of mPEG-PBLA-CC-PTX (PPCP) micelles, reflecting the excellent redox-sensitive activity of the PPSP micelles. The inhibitory effect of PPSP on HepG2, MCF-7 and HL-7702 cell proliferation was investigated with MTT assays, and the results demonstrated that PPSP is superior to PTX with respect to the inhibition of two tumor cell types at different experimental concentration. Simultaneously PPSP has lower toxicity against HL-7702 cells then PTX and PPCP. Moreover, the blank micelle from mPEG-PBLA showed no obvious toxicity to the two tumor cells at different experimental concentrations. In summary, the redox-sensitive PPSP micelle significantly improved the biosafety and the anti-tumor activity of PTX.

13.
Eur J Med Chem ; 178: 433-445, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202991

RESUMO

Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole as A-region and triazole as B-region. The SAR analysis indicated that 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole analogues displayed excellent antagonism of hTRPV1 activation by capsaicin and showed better potency compared to the corresponding dihydroindole analogues. Optimization of this design led to the eventual identification of 2-((1-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (6g), a potent TRPV1 antagonist. In vitro, using cells expressing recombinant human TRPV1 channels, 6g displayed potent antagonism activated by capsaicin (IC50 = 0.075 µM) and only partially blocked acid activation of TRPV1. In vivo, 6g exhibited good efficacy in capsaicin-induced and heat-induced pain models and had almost no hyperthermia side-effect. Furthermore, pharmacokinetic studies revealed that compound 6g had a superior oral exposure after oral administration in rats. To understand its binding interactions with the receptor, the docking study of 6g was performed in rTRPV1 model and showed an excellent fit to the binding site. On the basis of its superior profiles, 6g could be considered as the lead candidate for the further development of antinociceptive drugs.


Assuntos
Desenho de Fármacos , Indóis/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Triazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Indóis/administração & dosagem , Indóis/química , Masculino , Camundongos , Camundongos Endogâmicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo , Triazóis/administração & dosagem , Triazóis/química
14.
Front Pharmacol ; 10: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983994

RESUMO

The pharmacokinetic profile of a drug can be different when delivered as a nanosuspension compared with a true solution, which may in turn affect the therapeutic effect of the drug. The goal of this study was to prepare itraconazole nanosuspensions (ITZ-Nanos) stabilized by an amphipathic polymer, polyethylene glycol-poly (benzyl aspartic acid ester) (PEG-PBLA), by the precipitation-homogenization, and study the pharmacokinetic profile of the ITZ-Nanos. The particle size and morphology of nanosuspensions were determined by Zetasizer and field emission scanning electron microscope (SEM), respectively. The dissolution profile was evaluated using a paddle method according to Chinese Pharmacopoeia 2015. The level of ITZ in plasma and tissues was measured by a HPLC method. The optimized ITZ-Nanos had an average particle size of 268.1 ± 6.5 nm and the particles were in a rectangular form. The dissolution profile of ITZ-Nanos was similar to that of commercial ITZ injections, with nearly 90% ITZ released in the first 5 min. The ITZ-Nanos displayed different pharmacokinetic properties compared with the commercial ITZ injections, including a decreased initial drug concentration, increased plasma half-life and mean residence time (MRT), and increased concentration in the liver, lung, and spleen. The ITZ-Nanos can change the in vivo distribution of ITZ and result in passive targeting to the organs with mononuclear phagocyte systems (MPS).

15.
Acta Biomater ; 88: 357-369, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822554

RESUMO

Amphiphilic poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) and poly(ethylene glycol)-poly(benzyl-l-aspartate) (PPA) block copolymers were synthesized as pH-responsive and pH-nonresponsive copolymers, respectively. Polymer micelles were fabricated by the film dispersion method, and hydroxycamptothecin (HCPT) was physically encapsulated into the micelles. The average diameter of the HCPT-loaded PIPA micelles (PIPAH micelles) was approximately 230 nm, which was slightly smaller than that of the HCPT-loaded PPA micelles (PPAH micelles, approximately 260 nm). The drug-loading content and encapsulation efficiency of the PIPAH micelles (3.33% and 68.89%, respectively) were slightly higher than those of the PPAH micelles (2.90% and 59.68%, respectively). The PIPAH micelles exhibited better colloid stability, storage stability, and plasma stability than the PPAH micelles. Drug release from the PIPAH micelles with imino groups was pH dependent, and more than 75% or 65% of the loaded HCPT was released within 24 h in weakly acidic media (pH 5.0 or 6.0, respectively). An in vitro cell assay demonstrated that the pH-sensitive micelles exhibited potent suppression of cancer cell proliferation and little cytotoxicity on normal cells. Additionally, these micelles could be efficiently internalized by the tumor cells through macropinocytosis- and caveolin-mediated endocytotic pathways. HCPT-loaded micelles had longer circulation time than the HCPT solution in a pharmacokinetic study. In vivo antitumor experiments indicate that the PIPAH micelles had better antitumor efficacy than the pH-insensitive PPAH micelles and the HCPT solution. Therefore, the pH-responsive PIPAH micelles have great potential for high-efficiency delivery of HCPT. STATEMENT OF SIGNIFICANCE: In this study, a new type of pH-responsive amphiphilic copolymer, poly(ethylene glycol)-imino-poly(benzyl-l-aspartate) (PIPA) block copolymer, was synthesized. This copolymer had then self-assembled to form nanomicelles for tumor intracellular delivery of hydroxycamptothecin (HCPT) for the first time. In in vitro test, the PIPAH micelles exhibited adequate stability and pH-dependent drug release. To one's excitement, the PIPAH micelles exhibited better antitumor efficacy and biosafety than the pH-insensitive micelles (PPAH) and the HCPT solution in in vitro and in vivo antitumor experiments. Therefore, the pH-responsive micelles in this study have significant potential to be used for high-performance delivery of HCPT and potentially for the targeted delivery of other cancer therapeutic agents. The polymer designed in this study can be used as a carrier of poorly soluble drugs or other active ingredients.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Espaço Intracelular/metabolismo , Micelas , Polímeros/química , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Endossomos/ultraestrutura , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Peptídeos/síntese química , Peptídeos/química , Polímeros/síntese química , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
16.
Curr Cancer Drug Targets ; 19(4): 338-347, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29956630

RESUMO

BACKGROUND: Improving poorly soluble drugs into druggability was a major problem faced by pharmaceutists. Nanosuspension can improve the druggability of insoluble drugs by improving the solubility, chemical stability and reducing the use of additives, which provided a new approach for the development and application of the insoluble drugs formulation. Paclitaxel (PTX) is a well-known BCS class IV drug with poor solubility and permeability. Also, many studies have proved that paclitaxel is a substrate of the membrane-bound drug efflux pump P-glycoprotein (P-gp), therefore it often shows limited efficacy against the resistant tumors and oral absorption or uptake. OBJECTIVE: To manufacture an enhanced-penetration PTX nanosuspension (PTX-Nanos), and evaluate the physicochemical property, pharmacokinetics and tissue distribution in vivo and cytotoxic effect in vitro. METHODS: PTX-Nanos were prepared by microprecipitation-high pressure homogenization, with a good biocompatibility amphiphilic block copolymer poly(L-phenylalanine)-b-poly(L-aspartic acid) (PPA-PAA) as stabilizer. RESULTS: The PTX-Nanos had a sustained-dissolution manner and could effectively reduce plasma peak concentration and extend plasma circulating time as compared to PTX injection, markedly passively targeting the MPS-related organs, such as liver and spleen. This unique property might enhance treatment of cancer in these tissues and reduce the side effects in other normal tissues. Moreover, the hybrid stabilizers could enhance penetration of PTX in PTX-Nanos to multidrug resistance cells. CONCLUSION: To sum up, our results showed that the optimal formula could improve the solubility of PTX and the stability of the product. The PTX-Nanos developed in this research would be a promising delivery platform in cancer treatment.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Nanopartículas/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular , Proliferação de Células , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Masculino , Camundongos , Nanopartículas/química , Paclitaxel/farmacocinética , Polímeros/administração & dosagem , Polímeros/química , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Células Tumorais Cultivadas
17.
Curr Cancer Drug Targets ; 19(4): 285-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30520373

RESUMO

BACKGROUND: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface. OBJECTIVE: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field. METHODS: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017. RESULTS: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials. CONCLUSION: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanomedicina , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Dióxido de Silício/química , Animais , Antineoplásicos/química , Humanos , Nanoestruturas/administração & dosagem , Neoplasias/patologia
18.
J Nat Prod ; 81(5): 1219-1224, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29676573

RESUMO

Tiacumicin B (1, also known as fidaxomicin or difimicin) is a marketed drug for the treatment of Clostridium difficile infections. The biosynthetic pathway of 1 has been studied in Dactylosporangium aurantiacum subsp. hamdenensis NRRL 18085 and has enabled the identification of TiaM as a tailoring dihalogenase. Herein we report the isolation, structure elucidation, and bioactivity evaluation of 14 tiacumicin congeners (including 11 new ones) from the tiaM-inactivated mutant. A new tiacumicin congener, 3, with a propyl group at C-7‴ of the aromatic ring was found to exhibit improved antibacterial activity.


Assuntos
Antibacterianos/química , Fidaxomicina/química , Hidrolases/química , Micromonosporaceae/química , Aminoglicosídeos/química , Vias Biossintéticas/fisiologia , Testes de Sensibilidade Microbiana/métodos
19.
Int J Pharm ; 531(1): 108-117, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28830781

RESUMO

Amphiphilic block copolymers, PEG-PBLA with different molecular weights, were synthesized and used as new stabilizers for Itraconazole nannosuspensions (ITZ-PBLA-Nanos). ITZ-PBLA-Nanos were prepared by the microprecipitation-high pressure homogenization method, and the particle size and zeta potential were measured using a ZetaSizer Nano-ZS90. Morphology and crystallinity were studied using TEM, DSC and powder X-ray. The effect of the PEG-to-PBLA ratio, and the drug-to-stabilizer ratio were investigated to obtain the optimal formulation. It was found that the optimal length of hydrophobic block was 25 BLA-NCA molecules and the optimal ratio of drug/stabilizer was 1:1, where the resulted average particle size of ITZ-PBLA-Nanos was 262.1±7.13nm with a PDI value of 0.163±0.011. The images of TEM suggest that ITZ-PBLA-Nanos were rectangular in shape. ITZ existed as crystals in the nanoparticles as suggested by the DSC and XRD results. Compared with the crude drug suspensions, the dissolution rate of ITZ nanocrystals, was significantly increased and was similar to Sporanox® injection. The ITZ-PBLA-Nanos also demonstrated better dilution stability and storage stability compared with ITZ-F68-Nanos. The particle size of ITZ-PBLA-Nanos did not change significantly after incubated in rat plasma for 24h which is a good attribute for I.V. administration. Acute toxicity tests showed that ITZ-PBLA-Nanos has the highest LD50 compared with ITZ-F68-Nanos and Sporanox® injection. ITZ-PBLA-Nanos also showed stronger inhibiting effect on the growth of Candida albicans compared with Sporanox® injection. Therefore, PEG-PBLA has a promising potential as a biocompatible stabilizer for ITZ nanosuspensions and potentially for other nanosuspensions as well.


Assuntos
Itraconazol/administração & dosagem , Nanopartículas/química , Peptídeos/química , Polietilenoglicóis/química , Animais , Antifúngicos , Materiais Biocompatíveis/química , Tamanho da Partícula , Ratos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...