RESUMO
Deposition of atmospheric pollution as particulate matter (PM) has become a serious issue in many urban areas. This study measured and estimated the amount of atmospheric PM deposition onto oriental plane (Platanus orientalis L.) trees located in Tehran Megapolis, Iran. PM deposited on the leaves of urban trees during spring and summer was estimated using leaf wash measurements. In addition to direct measurements, the dry deposition velocity and the yearly whole-tree PM deposition were estimated using both field measurements and a theoretical model of deposition flux. We estimated air quality improvement as a result of the trees at respiratory height (1.5 m), tree height (10 m), and boundary layer height (1719 m). Foliar PM deposition during spring and summer was estimated to average 0.05 g/leaf and 41.39 g/tree using direct measurements. The annual PM deposited on the leaves, trunk, and branches of an average urban tree was calculated to be 78.60 g/tree. Trees were estimated to improve air quality at 1.5 m, 10 m, and 1719 m from ground level by 25.8%, 5.8%, and 0.1%, respectively. Hence, oriental plane trees substantially reduce PM at respiratory height.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Irã (Geográfico) , Material Particulado/análise , Folhas de Planta/química , ÁrvoresRESUMO
We assessed the effects of heater wattage on sap flux estimates from heat dissipation sensors and generated calibrated equations for 1-year-old Eucalyptus grandis Hill ex Maiden trees. We used a total of eight trees ranging from 3 to 6 cm in diameter. Our calibration experiment was performed with a modified tree-cut approach, which allowed us to estimate gravimetric water use manually weighing 20 l buckets every 15 min while sap flux was monitored on each tree. Our results indicate that changes the current supplied to the heaters from 0.15 to 0.25 W does not significantly influence sap flux estimates, as long as the maximum temperature (Tmax) is properly determined for each period when wattage is different, and natural temperature gradients are corrected. Using the original parameters developed for this method, sap flux density and sap flow had an average underestimation of 53%, which according to our analysis had a reduced but relevant correlation with tree diameter (R2 = 0.3, linear regression). These results may allow researchers to supply different currents to heat dissipation sensors to increase sensitivity or to reduce power consumption. They also provide evidence in favor of the correction and use of raw data collected when unwanted changes in wattage occur. The relationship observed between estimation error and tree diameter, while not strongly significant, suggests that diameter plays an important role in the estimation errors that has not been previously considered, and requires further research.
Assuntos
Eucalyptus/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Transporte Biológico , Calibragem , Temperatura Alta , Caules de Planta/fisiologia , ÁrvoresRESUMO
Tree transpiration is important in the recycling of precipitation in the Amazon and might be negatively affected by El Niño-Southern Oscillation (ENSO)-induced droughts. To investigate the relative importance of soil moisture deficits versus increasing atmospheric demand (VPD) and determine if these drivers exert different controls over tree transpiration during the wet season versus the dry season (DS), we conducted sap flow measurements in a primary lowland tropical forest in eastern Amazon during the most extreme ENSO-induced drought (2015/2016) recorded in the Amazon. We also assessed whether trees occupying different canopy strata contribute equally to the overall stand transpiration (Tstand). Canopy trees were the primary source of Tstand However, subcanopy trees are still important as they transpired an amount similar to other biomes around the globe. Tree water use was higher during the DS, indicating that during extreme drought trees did not reduce transpiration in response to low soil moisture. Photosynthetically active radiation and VPD exerted an overriding effect on water use patterns relative to soil moisture during extreme drought, indicating that light and atmospheric constraints play a critical role in controlling ecosystem fluxes of water. Our study highlights the importance of canopy and subcanopy trees to the regional water balance and highlights the resilience to droughts that these trees show during an extreme ENSO event.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
Assuntos
Secas , El Niño Oscilação Sul , Florestas , Transpiração Vegetal , Árvores/fisiologia , Brasil , Estações do Ano , Solo/química , Água/metabolismoRESUMO
As plantations become increasingly important sources of wood and fiber in arid/semiarid places, they have also become increasingly criticized for their hydrological impacts. An examination and comparison of gross rainfall (GR) partitioning across commonly-planted tree species (Pinus eldarica, Cupressus arizonica, Robinia pseudoacacia, and Fraxinus rotundifolia) in semiarid regions has great value for watershed and forest managers interested in managing canopy hydrological processes for societal benefit. Therefore, we performed a field study examining GR partitioning into throughfall (TF), stemflow (SF), and rainfall interception (I) for these species in the semiarid Chitgar Forest Park, Tehran, Iran. An advantage to our study is that we explore the effects of forest structural differences in plantation forests experiencing similar climatic factors and storm conditions. As such, variability in GR partitioning due to different meteorological conditions is minimized, allowing comparison of structural attributes across plantations. Our results show that commonly-selected afforestation species experiencing the same climate produced differing stand structures that differentially partition GR into TF, SF, and I. P. eldarica might be the best of the four species to plant if the primary goal of afforestation is to limit erosion and stormwater runoff as it intercepted more rainfall than other species. However, the high SF generation from F. rotundifolia, and low GR necessary to initiate SF, could maximize retention of water in the soils since SF has been shown to infiltrate along root pathways and access groundwater. A consideration of GR partitioning should be considered when selecting a species for afforestation/reforestation in water-limited ecosystems.
RESUMO
Interactions between precipitation and forest canopy elements (bark, leaves, and epiphytes) control the quantity, spatiotemporal patterning, and the chemical concentration, character and constituency of precipitation to soils. Canopy epiphytes exert a range of hydrological and biogeochemical effects due to their diversity of morphological traits and nutrient acquisition mechanisms. We reviewed and evaluated the state of knowledge regarding epiphyte interactions with precipitation partitioning (into interception loss, throughfall, and stemflow) and the chemical alteration of net precipitation fluxes (throughfall and stemflow). As epiphyte species are quite diverse, this review categorized findings by common paraphyletic groups: lichens, bryophytes, and vascular epiphytes. Of these groups, vascular epiphytes have received the least attention and lichens the most. In general, epiphytes decrease throughfall and stemflow and increase interception loss. Epiphytes alter the spatiotemporal pattern of throughfall and increase overall latent heat fluxes from the canopy. Epiphytes alter biogeochemical processes by impacting the transfer of solutes through the canopy; however, the change in solute concentration varies with epiphyte type and chemical species. We discuss several important knowledge gaps across all epiphyte groups. We also explore innovative methods that currently exist to confront these knowledge gaps and past techniques applied to gain our current understanding. Future research addressing the listed deficiencies will improve our knowledge of epiphyte roles in water and biogeochemical processes coupled within forest canopies-processes crucial to supporting microbe, plant, vertebrate and invertebrate communities within individual epiphytes, epiphyte assemblages, host trees, and even the forest ecosystem as a whole.
Assuntos
Briófitas , Florestas , Líquens , Chuva/químicaRESUMO
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
Assuntos
Biocombustíveis , Conservação de Recursos Energéticos/tendências , Política Ambiental , Agricultura/métodos , Agricultura/tendências , América , Água Subterrânea/química , Rios/química , Solo , Água/química , Ciclo Hidrológico , Movimentos da Água , Qualidade da ÁguaRESUMO
Widespread and intensive application of road deicers, primarily road salt (NaCl), in North America threatens water quality and the health of freshwater ecosystems. Intensive use of NaCl can be harmful to sensitive members of freshwater ecosystems such as amphibians. Detection of negative effects of NaCl application has prompted the search for alternative chemical deicers with lower environmental impacts. We conducted a series of 96-h acute toxicity tests to determine the negative sensitivity of larval wood frogs (Rana [Lithobates] sylvatica) to six deicing chemicals: urea (CH(4) N(2) O), sodium chloride (NaCl), magnesium chloride (MgCl(2) ), potassium acetate (CH(3) COOK), calcium chloride (CaCl(2) ), and calcium magnesium acetate (C(8) H(12) CaMgO(8) ). Acetates are sometimes touted as environmentally friendly alternatives to NaCl but have not been examined in enough detail to warrant this designation. When exposed to a range of environmentally realistic concentrations of these chemicals, larvae were least sensitive (i.e., had the lowest mortality rate) to CH(4) N(2) O, NaCl, and MgCl(2) and most sensitive to acetates (C(8) H(12) CaMgO(8) , CH(3) COOK) and CaCl(2) . Our observed median lethal concentration estimates (LC50(96-h) ) for NaCl were over two times higher than values presented in previous studies, which suggests variability in tolerance among R. sylvatica populations. The deicers varied greatly in their toxicity, and further research is warranted to examine the differential effects of this suite of deicers on other species.
Assuntos
Acetatos/toxicidade , Cloretos/toxicidade , Ranidae/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Cloreto de Cálcio/toxicidade , Compostos de Cálcio/toxicidade , Ecossistema , Água Doce/química , Larva/efeitos dos fármacos , Cloreto de Magnésio/toxicidade , Salinidade , Cloreto de Sódio/toxicidade , Meios de TransporteRESUMO
Patterns in the isotopic signal (stable C isotope composition; delta(13)C) of respiration (delta(13)C(R)) have led to important gains in understanding the C metabolism of many systems. Contained within delta(13)C(R) is a record of the C source mineralized, the metabolic pathway of C and the environmental conditions during which respiration occurred. Because gas samples used for analysis of delta(13)C(R) contain a mixture of CO(2) from respiration and from the atmosphere, two-component mixing models are used to identify delta(13)C(R). Measurement of ecosystem delta(13)C(R), using canopy airspace gas samples, was one of the first applications of mixing models in ecosystem ecology, and thus recommendations and guidelines are based primarily on findings from these studies. However, as mixing models are applied to other experimental conditions these approaches may not be appropriate. For example, the range in [CO(2)] obtained in gas samples from canopy air is generally less than 100 micromol mol(-1), whereas in studies of respiration from soil, foliage or tree stems, the range can span as much as 10,000 micromol mol(-1) and greater. Does this larger range in [CO(2)] influence the precision and accuracy of delta(13)C(R) estimates derived from mixing models? Does the outcome from using different regression approaches and mixing models vary depending on the range of [CO(2)]? Our research addressed these questions using a simulation approach. We found that it is important to distinguish between large (>1,000 micromol mol(-1)) and small (<100 micromol mol(-1)) ranges of CO(2) when applying a mixing model (Keeling plot or Miller-Tans) and regression approach (ordinary least squares or geometric mean regression) combination to isotopic data. The combination of geometric mean regression and the Miller-Tans mixing model provided the most accurate and precise estimate of delta(13)C(R) when the range of CO(2) is >or=1,000 micromol mol(-1).
Assuntos
Dióxido de Carbono/química , Isótopos de Carbono/química , Modelos TeóricosRESUMO
This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal was to investigate the potential for using nocturnal down-valley winds (cold air drainage) for monitoring ecosystem processes in mountainous terrain from two perspectives: measurements of the isotopic composition of ecosystem-respired CO2 (delta13C(ER)) and estimates of fluxes of CO2 transported in the drainage flow. To test if this approach is plausible, we monitored the wind patterns, CO2 concentrations, and the carbon isotopic composition of the air as it exited the base of a young (approximately 40 yr-old) and an old (>450 yr-old) steeply sided Douglas-fir watershed. Nocturnal cold air drainage within these watersheds was strong, deep, and occurred on more than 80% of summer nights. The depth of cold air drainage rapidly increased to tower height or greater when the net radiation at the top of the tower approached zero. The carbon isotope composition of CO2 in the drainage system holds promise as an indicator of variation in basin-scale physiological processes. Although there was little vertical variation in CO2 concentration at any point in time, we found that the range of CO2 concentration over a single evening was sufficient to estimate delta 13C(ER) from Keeling plot analyses. The seasonal variation in delta 13C(ER) followed expected trends: during the summer dry season delta 13C(ER) became less negative (more enriched in 13C), but once rain returned in the fall, delta 13C(ER) decreased. However, we found no correlation between recent weather (e.g., vapor pressure deficit) and delta 13C(ER) either concurrently or with up to a one-week lag. Preliminary estimates suggest that the nocturnal CO2 flux advecting past the 28-m tower is a rather small fraction (<20%) of the watershed-scale respiration. This study demonstrates that monitoring the isotopic composition and CO2 concentration of cold air drainage at the base of a watershed provides a new tool for quantifying ecosystem metabolism in mountainous ecosystems on the basin scale.