Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 662: 124518, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39074645

RESUMO

Cerasomes are a modified form of liposomes containing both inorganic and organic parts and due to their strong polyorganosiloxane surface have remarkably high morphological stability and provide easier functionalization compared with conventional liposomes. To investigate the potential of these nanocarriers for oral delivery, bile salt integrated cerasomes (named bilocerasomes) encapsulating idarubicin hydrochloride (IDA) were prepared and characterized. The optimum formulation showed excellent stability in the simulated gastrointestinal fluids as well as under storage conditions. The oral pharmacokinetics of the IDA solution, empty nanocarrier + drug solution, and IDA-loaded bilocerasome were evaluated. The nanoformulation significantly increased the area under the drug concentration-time curve and the mean residence time (∼14.3- and 9-fold, respectively). The results obtained from cell uptake and chylomicron flow blocking approach revealed that bilocerasomes are absorbed into the intestinal cells via a clathrin/caveolin-independent endocytosis pathway and transported to the systemic circulation extensively via the intestinal lymphatic vessels. Considering the high stability of the prepared bilocerasome, noticeable participation of lymphatic transport in its systemic absorption and marked enhancement in the oral absorption of IDA, bilocerasomes can be introduced as a capable carrier for improving the oral bioavailability of drugs, particularly those that hepatic first-pass metabolism seriously limits their oral absorption.


Assuntos
Ácidos e Sais Biliares , Disponibilidade Biológica , Portadores de Fármacos , Idarubicina , Lipossomos , Animais , Idarubicina/administração & dosagem , Idarubicina/farmacocinética , Portadores de Fármacos/química , Administração Oral , Humanos , Ácidos e Sais Biliares/química , Masculino , Nanopartículas/química , Células CACO-2 , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Ratos Sprague-Dawley , Absorção Intestinal , Estabilidade de Medicamentos , Ratos
2.
Pharm Dev Technol ; 29(3): 187-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369965

RESUMO

Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.


Assuntos
Ácidos e Sais Biliares , Nanopartículas , Lipossomos/química , Nanopartículas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...