Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(1): 78-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164182

RESUMO

Objective: Secreted and transmembrane protein 1 (SECTM1) is a gene encoding a transmembrane protein. The role of SECTM1 in glioblastoma (GBM) is unclear. Here, we reported the abnormal expression of SECTM1 in GBM for the first time and studied the role and mechanism of SECTM1 in GBM. Methods: qRT-PCR, Western blotting and immunofluorescence were used to detect the expression of SECTM1 in gliomas of different grades and GBM cell lines. After the knockdown of SECTM1 expression in cell lines by shRNA, the effect of SECTM1 in GBM cell lines was verified by CCK-8, Transwell, EdU and wound healing experiments. We further investigated the effect and mechanism of SECTM1 on GBM in vitro and in vivo. The effect of SECTM1 on glioma growth was detected by subcutaneous tumor xenografts in nude mice in vivo. Results: The results showed that the knockdown of SECTM1 expression in cell lines significantly inhibited the proliferation, migration and invasion of GBM cells while inhibiting the progression of subcutaneous xenograft tumors in nude mice. However, the role and molecular mechanism of SECTM1 in GBM remain unclear. SECTM1 was found to promote GBM epithelial-mesenchymal transition (EMT) like processes. Bioinformatics analysis and Western blotting showed that SECTM1 regulates glioblastoma invasion and EMT-like processes mainly through the TGFß1/Smad signaling pathway. Conclusion: The low expression of SECTM1 has an inhibitory effect on GBM and is a potential target for GBM treatment. SECTM1 may also be a promising biomarker for the diagnosis and prognosis of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Camundongos Nus , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Transdução de Sinais/genética , Transição Epitelial-Mesenquimal/fisiologia , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Acta Biomater ; 173: 365-377, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890815

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that responds poorly to single-drug immunotherapy with PD-L1 (CD274) inhibitors. Here, we prepared mesoporous nanomaterials Cu2MoS4 (CMS)/PEG loaded with PD-L1 inhibitor BMS-1 and CXCR4 inhibitor Plerixafor to form the nanodrug CMS/PEG-B-P. In vitro experiments, CMS/PEG-B-P have a more substantial inhibitory effect on the expression of PD-L1 and CXCR4 as well as to promote the apoptosis of pancreatic cancer cells KPC and suppressed KPC cell proliferation were detected by flow cytometry, qPCR and Western blotting (WB). Promotes the release of the cytotoxic substance reactive oxygen species (ROS) and the production of the immunogenic cell death (ICD) marker calreticulin (CRT) in KPC cells. CMS/PEG-B-P was also detected to have a certain activating effect on mouse immune cells, dendritic cells (mDC) and macrophage RAW264.7. Subcutaneous tumorigenicity experiments in C57BL/6 mice verified that CMS/PEG-B-P had an inhibitory effect on the growth of tumors and remodeling of the tumor immune microenvironment, including infiltration of CD4+ and CD8+ T cells and polarization of macrophages, as well as reduction of immunosuppressive cells. Meanwhile, CMS/PEG-B-P was found to have different effects on the release of cytokines in the tumor immune microenvironment, including The levels of immunostimulatory cytokines INF-γ and IL-12 are increased and the levels of immunosuppressive cytokines IL-6, IL-10 and IFN-α are decreased. In conclusion, nanomaterial-loaded immune checkpoint inhibitor therapies can enhance the immune response and reduce side effects, a combination that shows great potential as a new immunotherapeutic approach. STATEMENT OF SIGNIFICANCE: Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that has a low response to single-drug immunotherapy with PD-L1 (CD274) inhibitors. We preared PEG-modified mesoporous nanomaterials Cu2MoS4 (CMS) loaded with PD-L1 inhibitor BMS-1 and CXCR4 inhibitor Plerixafor to form the nanodrug CMS/PEG-B-P. Our study demonstrated that Nanomaterial-loaded immune checkpoint inhibitor therapies can enhance the immune response and reduce side effects, a combination that shows great potential as a new immunotherapeutic approach.


Assuntos
Carcinoma Ductal Pancreático , Compostos Heterocíclicos , Nanopartículas , Neoplasias Pancreáticas , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Linfócitos T CD8-Positivos/patologia , Microambiente Tumoral , Mobilização de Células-Tronco Hematopoéticas , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Imunoterapia , Citocinas/farmacologia , Linhagem Celular Tumoral
3.
Apoptosis ; 28(11-12): 1628-1645, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787960

RESUMO

Necroptosis has been shown to play an important role in the development of tumors. However, the characteristics of the necroptosis-related subtypes and the associated immune cell infiltration in the tumor microenvironment (TME) of breast cancer (BRCA) remain unclear. In this study, we identified three clusters related to necroptosis using the expression patterns of necroptosis-relevant genes (NRGs), and found that these three clusters had different clinicopathological features, prognosis and immune cell infiltration in the TME. Cluster 2 was characterized by less infiltration of immune cells in the TME and was associated with a worse prognosis. Then, a necroptosis risk score (NRS) composed of 14 NRGs was constructed using the least absolute shrinkage and selection operator regression (LASSO) Cox regression method. Based on NRS, all BRCA patients in the TCGA datasets were classified into a low-risk group and a high-risk group. Patients in the low-risk group were characterized by longer overall survival (OS), lower mutation burden, and higher infiltration level of immune cells in the TME. Moreover, the NRS was significantly associated with chemotherapeutic drug sensitivity. Finally, the knockdown of VDAC1 reduced the proliferation and migration of BRCA cells, and promoted cell death induced by necroptosis inducer. This study identified a novel necroptosis-related subtype of BRCA, and a comprehensive analysis of NRGs in BRCA revealed its potential roles in prognosis, clinicopathological features, TME, chemotherapy, tumor proliferation, and tumor necroptosis. These results may improve our understanding of NRGs in BRCA and provide a reference for developing individualized therapeutic strategies.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Necroptose/genética , Apoptose , Fatores de Risco , Morte Celular , Microambiente Tumoral/genética
4.
Biomater Res ; 26(1): 71, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461108

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a fatal malignant primary brain tumor in adults. The therapeutic efficacy of chemotherapeutic drugs is limited due to the blood-brain barrier (BBB), poor drug targeting, and short biological half-lives. Multifunctional biomimetic nanodrugs have great potential to overcome these limitations of chemotherapeutic drugs. METHODS: We synthesized and characterized a biomimetic nanodrug CMS/PEG-DOX-M. The CMS/PEG-DOX-M effectively and rapidly released DOX in U87 MG cells. Cell proliferation and apoptosis assays were examined by the MTT and TUNEL assays. The penetration of nanodrugs through the BBB and anti-tumor efficacy were investigated in the orthotopic glioblastoma xenograft models. RESULTS: We showed that CMS/PEG-DOX-M inhibited cell proliferation of U87 MG cells and effectively induced cell apoptosis of U87 MG cells. Intracranial antitumor experiments showed that free DOX hardly penetrated the BBB, but CMS/PEG-DOX-M effectively reached the orthotopic intracranial tumor through the BBB and significantly inhibited tumor growth. Immunofluorescence staining of orthotopic tumor tissue sections confirmed that nanodrugs promoted apoptosis of tumor cells. This study developed a multimodal nanodrug treatment system with the enhanced abilities of tumor-targeting, BBB penetration, and cancer-specific accumulation of chemotherapeutic drugs by combining chemotherapy and photothermal therapy. It can be used as a flexible and effective GBM treatment system and it may also be used for the treatment of other central nervous systems (CNS) tumors and extracranial tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...