Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 39, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303029

RESUMO

BACKGROUND: Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS: Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS: We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS: Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.


Assuntos
Glioblastoma , Fatores de Transcrição , Proteínas com Motivo Tripartido , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Aging Dis ; 14(5): 1533-1554, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196120

RESUMO

Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.

3.
Adv Sci (Weinh) ; 10(21): e2301428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211686

RESUMO

Subarachnoid hemorrhage (SAH) is a devastating subtype of stroke with high mortality and disability rate. Meningeal lymphatic vessels (mLVs) are a newly discovered intracranial fluid transport system and are proven to drain extravasated erythrocytes from cerebrospinal fluid into deep cervical lymph nodes after SAH. However, many studies have reported that the structure and function of mLVs are injured in several central nervous system diseases. Whether SAH can cause mLVs injury and the underlying mechanism remain unclear. Herein, single-cell RNA sequencing and spatial transcriptomics are applied, along with in vivo/vitro experiments, to investigate the alteration of the cellular, molecular, and spatial pattern of mLVs after SAH. First, it is demonstrated that SAH induces mLVs impairment. Then, through bioinformatic analysis of sequencing data, it is discovered that thrombospondin 1 (THBS1) and S100A6 are strongly associated with SAH outcome. Furthermore, the THBS1-CD47 ligand-receptor pair is found to function as a key role in meningeal lymphatic endothelial cell apoptosis via regulating STAT3/Bcl-2 signaling. The results illustrate a landscape of injured mLVs after SAH for the first time and provide a potential therapeutic strategy for SAH based on mLVs protection by disrupting THBS1 and CD47 interaction.


Assuntos
Vasos Linfáticos , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Hemorragia Subaracnóidea/patologia , Antígeno CD47 , Transcriptoma/genética , Vasos Linfáticos/patologia , Análise de Sequência de RNA
4.
EBioMedicine ; 84: 104266, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36126617

RESUMO

BACKGROUND: Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients. In addition, we investigated mood-related changes by stimulating PVN-OXT in mice. METHODS: Quantitative immunocytochemistry and in situ hybridization were performed in the PVN for OXT and CRH on 6 BD and 6 BD-controls, 9 MDD and 9 MDD-controls. mRNA expressions of their receptors (OXTR, CRHR1 and CRHR2) were determined in anterior cingulate cortex and dorsolateral prefrontal cortex (DLPFC) of 30 BD and 34 BD-controls, and 24 MDD and 12 MDD-controls. PVN of 41 OXT-cre mice was short- or long-term activated by chemogenetics, and mood-related behavior was compared with 26 controls. FINDINGS: Significantly increased OXT-immunoreactivity (ir), OXT-mRNA in PVN and increased OXTR-mRNA in DLPFC, together with increased ratios of OXT-ir/CRH-ir and OXTR-mRNA/CRHR-mRNA were observed in BD, at least in male BD patients, but not in MDD patients. PVN-OXT stimulation induced depression-like behaviors in male mice, and mixed depression/mania-like behaviors in female mice in a time-dependent way. INTERPRETATION: Increased PVN-OXT and DLPFC-OXTR expression are characteristic for BD, at least for male BD patients. Stimulation of PVN-OXT neurons induced mood changes in mice, in a pattern different from BD. FUNDING: National Natural Science Foundation of China (81971268, 82101592).


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Animais , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Masculino , Camundongos , Ocitocina , RNA Mensageiro/genética
5.
Transl Psychiatry ; 12(1): 275, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821008

RESUMO

We investigated for the first time the proteomic profiles both in the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of major depressive disorder (MDD) and bipolar disorder (BD) patients. Cryostat sections of DLPFC and ACC of MDD and BD patients with their respective well-matched controls were used for study. Proteins were quantified by tandem mass tag and high-performance liquid chromatography-mass spectrometry system. Gene Ontology terms and functional cluster alteration were analyzed through bioinformatic analysis. Over 3000 proteins were accurately quantified, with more than 100 protein expressions identified as significantly changed in these two brain areas of MDD and BD patients as compared to their respective controls. These include OGDH, SDHA and COX5B in the DLPFC in MDD patients; PFN1, HSP90AA1 and PDCD6IP in the ACC of MDD patients; DBN1, DBNL and MYH9 in the DLPFC in BD patients. Impressively, depending on brain area and distinct diseases, the most notable change we found in the DLPFC of MDD was 'suppressed energy metabolism'; in the ACC of MDD it was 'suppressed tissue remodeling and suppressed immune response'; and in the DLPFC of BD it was differentiated 'suppressed tissue remodeling and suppressed neuronal projection'. In summary, there are distinct proteomic changes in different brain areas of the same mood disorder, and in the same brain area between MDD and BD patients, which strengthens the distinct pathogeneses and thus treatment targets.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Idoso , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética/métodos , Profilinas/metabolismo , Proteômica
7.
J Affect Disord ; 277: 620-630, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905914

RESUMO

BACKGROUND: There are currently no objective diagnostic biomarkers for major depressive disorder (MDD) due to the biological complexity of the disorder. The existence of blood-based biomarkers with high specificity would be convenient for the clinical diagnosis of MDD. METHODS: A comprehensive plasma proteomic analysis was conducted in a highly homogeneous cohort [7 drug-naïve MDD patients and 7 healthy controls (HCs)], with bioinformatics analysis combined with machine learning used to screen candidate proteins. Verification of reproducibility and specificity was conducted in independent cohorts [60 HCs and 74 MDD, 42 schizophrenia (SZ) and 39 bipolar I disorder (BD-I) drug-naïve patients]. Furthermore, verification of consistency was accomplished by proteomic analysis of postmortem brain tissue from 16 MDD patients and 16 HCs. RESULTS: Levels of C-reactive protein (CRP), antithrombin III (ATIII), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and vitamin D-binding protein (VDB) were significantly higher in MDD patients, both in the discovery cohort and independent replication cohort. In comparison with SZ or BD-I patients, two proteins (VDB and ITIH4) were significantly elevated only in MDD patients. In addition, increased VDB and ITIH4 were observed consistently in both plasma and postmortem dorsolateral prefrontal cortex tissues of MDD patients. Furthermore, a panel consisting of all four plasma proteins was able to distinguish MDD patients from HCs or SZ or BD-I patients with the highest accuracy. CONCLUSION: Plasma ITIH4 and VDB may be potential plasma biomarkers of MDD with high specificity. The four-protein panel is more suitable as a potential clinical diagnostic marker for MDD.


Assuntos
Transtorno Depressivo Maior , Preparações Farmacêuticas , Biomarcadores , Transtorno Depressivo Maior/diagnóstico , Humanos , Plasma , Proteômica , Reprodutibilidade dos Testes
8.
Psychoneuroendocrinology ; 117: 104680, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387876

RESUMO

BACKGROUND: Classic nuclear-initiated estrogen signaling stimulates corticotropin-releasing hormone (CRH) gene expression as a transcription factor. However, the possible mechanism by which membrane-initiated estrogen signaling (MIES) influences CRH expression remains unclear. There are indications that MIES may upregulate nitric oxide (NO) production through the phosphatidylinositol 3-hydroxy kinase (PI3K) and potentially through the mitogen-activated protein kinase (MAPK) pathway. OBJECTIVES: We investigated the effect of MIES-mediated kinase pathways on CRH expression with or without NO synthesis. METHOD: In SK-N-SH cell culture, estradiol-bovine serum albumin (E2-BSA) was used as the specific membrane estrogen receptor activator, with a specific NO donor, and/or inhibitors for NO synthase (NOS), PI3K, MAPK, protein kinase A (PKA), and protein kinase C (PKC). RESULTS: E2-BSA significantly increased NO and CRH levels in the medium and NOS1-mRNA levels in the cells. In addition, NO donor up-regulated CRH expression, while NOS-inhibitor down-regulated it. When the inhibitor of MAPK and/or the inhibitor of PI3K was added to the medium, only the latter appeared to significantly block the stimulating effect of E2-BSA on NO synthesis, and this was accompanied by an increased CRH expression in the medium. We further studied the effect of the MIES-PKC-mediated pathway on CRH expression, with or without NOS-inhibitor, while the MIES-PKA(-PI3K) pathway served as a control. We found that MIES-PKC upregulated CRH expression independent of NO synthesis. CONCLUSION: MIES can efficiently upregulate CRH expression via various intracellular kinase pathways and may thus be a crucial component in the stress response.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Regulação da Expressão Gênica/fisiologia , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Receptores de Estrogênio/metabolismo , Soroalbumina Bovina/farmacologia , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos
9.
Psychoneuroendocrinology ; 77: 56-62, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024269

RESUMO

A hyperactive hypothalamo-pituitary-adrenal (HPA) axis is a prominent feature in depression. It has been shown that androgens inhibit HPA activity and that estrogens stimulate it. We have therefore investigated, in human postmortem hypothalamus, whether depression features an increase in aromatase, which is the rate-limiting enzyme for the conversion of androgens to estrogens. In addition, we have tested the effect of an aromatase inhibitor on depression-like symptoms in a frequently used animal model for depression. At first, aromatase immunoreactivity (ir) was quantified in the central part of the hypothalamic paraventricular nucleus (PVN) of 10 major depressive disorder (MDD) patients and 10 well-matched control subjects. Subsequently an animal experimental study was performed using the chronic unpredictable mild stress (CUMS) rats as depression model. The effect of administration of 1,4,6-androstatriene-3,17-dione (ATD), an aromatase inhibitor, was investigated by silastic capsule implantation. In the postmortem study, the amount of PVN aromatase-ir decreased significantly in the MDD group compared to the controls (P=0.029). In the animal study, ATD was found to cause significantly increased testosterone (T) levels, both in plasma and in the hypothalamus. However, ATD administration did not show significant effects on the depression-like behaviors or plasma corticosterone levels in CUMS rats. Based on our observations in human postmortem material and the animal experiment, we have to conclude that alterations in aromatase in adulthood do not seem to play a major role in the pathogenesis of the symptoms of depression.


Assuntos
Aromatase/metabolismo , Transtorno Depressivo Maior/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Androstatrienos/farmacologia , Animais , Inibidores da Aromatase/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Estresse Psicológico/metabolismo , Testosterona/sangue
10.
Gene ; 554(2): 148-54, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25445284

RESUMO

L-Carnitine supplementation has been used to reduce obesity caused by high-fat diet, which is beneficial for lowering blood and hepatic lipid levels, and for ameliorating fatty liver. However, whether l-carnitine may affect irregular feeding-induced obesity and lipid metabolism disorder is still largely unknown. In the present study, we developed a time-delayed pattern of eating, and investigated the effects of l-carnitine on the irregular eating induced adiposity in mice. After an experimental period of 8 weeks with l-carnitine supplementation, l-carnitine significantly inhibited body weight increase and epididymal fat weight gain induced by the time-delayed feeding. In addition, l-carnitine administration decreased levels of serum alanine aminotransferase (GPT), glutamic oxalacetic transaminase (GOT) and triglyceride (TG), which were significantly elevated by the irregular feeding. Moreover, mice supplemented with l-carnitine did not display glucose intolerance-associated hallmarks, which were found in the irregular feeding-induced obesity. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that l-carnitine counteracted the negative alterations of lipid metabolic gene expression (fatty acid synthase, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, cholesterol 7α-hydroxylase, carnitine/acylcarnitine translocase) in the liver and fat of mice caused by the irregular feeding. Therefore, our results suggest that the time-delayed pattern of eating can induce adiposity and lipid metabolic disorders, while l-carnitine supplementation might prevent these negative symptoms.


Assuntos
Carnitina/administração & dosagem , Comportamento Alimentar/fisiologia , Transtornos do Metabolismo dos Lipídeos/prevenção & controle , Obesidade/prevenção & controle , Gordura Abdominal/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...