Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(44): 14866-14877, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32817168

RESUMO

Group 2 innate lymphoid cells (ILC2s) represent a subset of newly discovered immune cells that are involved in immune reactions against microbial pathogens, host allergic reactions, as well as tissue repair. The basic helix-loop-helix transcription factors collectively called E proteins powerfully suppress the differentiation of ILC2s from bone marrow and thymic progenitors while promoting the development of B and T lymphocytes. How E proteins exert the suppression is not well understood. Here we investigated the underlying molecular mechanisms using inducible gain and loss of function approaches in ILC2s and their precursors, respectively. Cross-examination of RNA-seq and ATAC sequencing data obtained at different time points reveals a set of genes that are likely direct targets of E proteins. Consequently, a widespread down-regulation of chromatin accessibility occurs at a later time point, possibly due to the activation of transcriptional repressor genes such as Cbfa2t3 and Jdp2 The large number of genes repressed by gain of E protein function leads to the down-regulation of a transcriptional network important for ILC2 differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Redes Reguladoras de Genes , Imunidade Inata , Linfócitos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Cromatina/metabolismo , Expressão Gênica , Linfócitos/citologia , Linfócitos/imunologia , Camundongos
2.
Immunohorizons ; 3(12): 593-605, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852728

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident lymphoid cells that reside mostly at barrier surfaces and participate in the initial response against pathogens. They are classified into different types based on effector programs that are based on cytokine production and transcription factor expression. They all derive from the common lymphoid precursor, but the molecular mechanisms regulating ILC subset development is not well understood. Experiments using Id2 knockout mice have previously shown that E protein activity inhibition is an absolute requirement for the development of all ILC subsets. In this study, we use a genetic approach to demonstrate that small increases in E protein activity during ILC development selectively inhibit type 2 ILC development. Type 1 ILCs are mostly unperturbed, and type 3 ILC show only a minor inhibition. This effect is first evident at the ILC2 progenitor stage and is ILC intrinsic. Therefore, our results demonstrate that modulation of E protein activity can bias cell fate decisions in developing ILCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Imunidade Inata/imunologia , Células T Matadoras Naturais/imunologia , Fator de Transcrição 4/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Técnicas de Introdução de Genes , Células Progenitoras Linfoides/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
3.
J Exp Med ; 216(4): 884-899, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30898894

RESUMO

Current models propose that group 2 innate lymphoid cells (ILC2s) are generated in the bone marrow. Here, we demonstrate that subsets of these cells can differentiate from multipotent progenitors and committed T cell precursors in the thymus, both in vivo and in vitro. These thymic ILC2s exit the thymus, circulate in the blood, and home to peripheral tissues. Ablation of E protein transcription factors greatly promotes the ILC fate while impairing B and T cell development. Consistently, a transcriptional network centered on the ZBTB16 transcription factor and IL-4 signaling pathway is highly up-regulated due to E protein deficiency. Our results show that ILC2 can still arise from what are normally considered to be committed T cell precursors, and that this alternative cell fate is restrained by high levels of E protein activity in these cells. Thymus-derived lung ILC2s of E protein-deficient mice show different transcriptomes, proliferative properties, and cytokine responses from wild-type counterparts, suggesting potentially distinct functions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Precursoras de Linfócitos T/metabolismo , Fator de Transcrição 4/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Interleucina-4/metabolismo , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Timo/citologia , Fator de Transcrição 4/genética , Transcrição Gênica , Transcriptoma
4.
J Immunol ; 198(8): 3149-3156, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28258196

RESUMO

Innate lymphoid cells (ILCs) are important regulators in various immune responses. The current paradigm states that all newly made ILCs originate from common lymphoid progenitors in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Unexpectedly, we found that ectopically expressing Id1 or deleting two E protein genes in the thymus drastically increased ILC2 counts in the thymus and other organs where ILC2 normally reside. Further evidence suggests a thymic origin of these mutant ILC2s. The mutant mice exhibit augmented spontaneous infiltration of eosinophils and heightened responses to papain in the lung and increased ability to expulse the helminth parasite, Nippostrongylus brasiliensis These results prompt the questions of whether the thymus naturally has the capacity to produce ILC2s and whether E proteins restrain such a potential. The abundance of ILC2s in Id1 transgenic mice also offers a unique opportunity for testing the biological functions of ILC2s.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/imunologia , Timo/imunologia , Animais , Linhagem da Célula/imunologia , Separação Celular , Regulação para Baixo , Citometria de Fluxo , Proteína 1 Inibidora de Diferenciação/imunologia , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Timo/citologia
5.
PLoS One ; 12(3): e0174011, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301594

RESUMO

Daxx was originally isolated as a Fas-binding protein. However, the in vivo function of Daxx in Fas-induced apoptosis has remained enigmatic. Fas plays an important role in homeostasis in the immune system. Fas gene mutations lead to autoimmune-lymphoproliferation (lpr) diseases characterized by hyperplasia of secondary lymphoid organs. It is well established that the FADD adaptor binds to Fas, and recruits/activates caspase 8. However, additional proteins including Daxx have also been indicated to associate with Fas. It was proposed that Daxx mediates a parallel apoptotic pathway that is independent of FADD and caspase 8, but signals through ASK1-mediated apoptotic pathway. However, because the deletion of Daxx leads to embryonic lethality, the in vivo function of Daxx has not been properly analyzed. In the current study, analysis was performed using a conditional mutant mouse in which Daxx was deleted specifically in T cells. The data show that Daxx-/- T cells were able to undergo normal Fas-induced apoptosis. While containing normal thymocyte populations, the T cell-specific Daxx-/- mice have a reduced peripheral T cell pool. Importantly, Daxx-deficient T cells displayed increased death responses upon activation through TCR stimulation. These results unequivocally demonstrated that Daxx does not mediate Fas-induced apoptosis, but rather that it plays a critical role in survival responses in primary mature T cells.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , Sobrevivência Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Linfócitos T/citologia , Receptor fas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Proteínas Correpressoras , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo
6.
J Biol Chem ; 290(21): 13344-53, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25855793

RESUMO

3' repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.


Assuntos
Exodesoxirribonucleases/metabolismo , Exorribonucleases/metabolismo , Fosfoproteínas/metabolismo , RNA/química , RNA/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/metabolismo , Exodesoxirribonucleases/química , Exodesoxirribonucleases/genética , Humanos , Cinética , Dados de Sequência Molecular , Mutação/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos
7.
Nucleic Acids Res ; 42(3): 1671-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170812

RESUMO

MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3' side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5' side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Humanos , Metoxaleno/farmacologia
8.
PLoS One ; 8(12): e82666, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349332

RESUMO

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5' flapped structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that recognizes 5' flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that regulation of FEN1 by FANCA contributes to the maintenance of genomic stability.


Assuntos
Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Endonucleases Flap/metabolismo , Ativação Enzimática , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Endonucleases Flap/genética , Humanos , Cinética , Mutação , Domínios e Motivos de Interação entre Proteínas
9.
DNA Repair (Amst) ; 12(5): 377-88, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23522793

RESUMO

The Y-family of DNA polymerases support of translesion DNA synthesis (TLS) associated with stalled DNA replication by DNA damage. Recently, a number of studies suggest that some specialized TLS polymerases also support other aspects of DNA metabolism beyond TLS in vivo. Here we show that mouse polymerase kappa (Polκ) could accumulate at laser-induced sites of damage in vivo resembling polymerases eta and iota. The recruitment was mediated through Polκ C-terminus which contains the PCNA-interacting peptide, ubiquitin zinc finger motif 2 and nuclear localization signal. Interestingly, this recruitment was significantly reduced in MSH2-deficient LoVo cells and Rad18-depleted cells. We further observed that Polκ-deficient mouse embryo fibroblasts were abnormally sensitive to H2O2 treatment and displayed defects in both single-strand break repair and double-strand break repair. We speculate that Polκ may have an important role in strand break repair following oxidative stress in vivo.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Peróxido de Hidrogênio/farmacologia , Lasers , Camundongos , Camundongos Knockout , Proteína 2 Homóloga a MutS/metabolismo , Sinais de Localização Nuclear , Estresse Oxidativo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína
10.
J Biol Chem ; 287(7): 4800-7, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22194614

RESUMO

The Fanconi anemia complementation group A (FANCA) gene is one of 15 disease-causing genes and has been found to be mutated in ∼60% of Fanconi anemia patients. Using purified protein, we report that human FANCA has intrinsic affinity for nucleic acids. FANCA binds to both single-stranded (ssDNA) and double-stranded (dsDNA) DNAs; however, its affinity for ssDNA is significantly higher than for dsDNA in an electrophoretic mobility shift assay. FANCA also binds to RNA with an intriguingly higher affinity than its DNA counterpart. FANCA requires a certain length of nucleic acids for optimal binding. Using DNA and RNA ladders, we determined that the minimum number of nucleotides required for FANCA recognition is ∼30 for both DNA and RNA. By testing the affinity between FANCA and a variety of DNA structures, we found that a 5'-flap or 5'-tail on DNA facilitates its interaction with FANCA. A patient-derived FANCA truncation mutant (Q772X) has diminished affinity for both DNA and RNA. In contrast, the complementing C-terminal fragment of Q772X, C772-1455, retains the differentiated nucleic acid-binding activity (RNA > ssDNA > dsDNA), indicating that the nucleic acid-binding domain of FANCA is located primarily at its C terminus, where most disease-causing mutations are found.


Assuntos
DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteína do Grupo de Complementação A da Anemia de Fanconi/química , Proteínas de Ligação a RNA/química , RNA/química , Substituição de Aminoácidos , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Humanos , Mutação de Sentido Incorreto , Mapeamento de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Front Biosci (Landmark Ed) ; 15(3): 1131-49, 2010 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-20515746

RESUMO

Fanconi anemia (FA) is a recessive genetic disorder characterized by developmental defects, bone marrow failure, and cancer susceptibility. The complete set of FA genes has only been identified recently and seems to be uniquely conserved among vertebrates. Fanconi anemia proteins have been implicated in the repair of interstrand DNA crosslinks that block DNA replication and transcription. Although all thirteen FA complementation groups show similar clinical and cellular phenotypes, approximately 85% of patients presented defective FANCA, FANCC, or FANCG. The established DNA interacting components (FANCM, FANCI, FANCD2, and FANCJ) account only for approximately 5% of all FA patients, an observation that raises doubt concerning the roles of FA proteins in DNA repair. In recent years, rapid progress in the area of FA research has provided great insights into the critical roles of FA proteins in DNA repair. However, many FA proteins do not have identifiable domains to indicate how they contribute to biological processes, particularly DNA repair. Therefore, future biochemical studies are warranted to understand the biological functions of FA proteins and their implications in human diseases.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/fisiologia , Anemia de Fanconi/metabolismo , Transdução de Sinais/fisiologia , Animais , Dano ao DNA , Reparo do DNA/genética , Replicação do DNA , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Humanos , Modelos Genéticos , Fosforilação , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...