Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4978, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862537

RESUMO

The electrical outputs of single-layer antiferromagnetic memory devices relying on the anisotropic magnetoresistance effect are typically rather small at room temperature. Here we report a new type of antiferromagnetic memory based on the spin phase change in a Mn-Ir binary intermetallic thin film at a composition within the phase boundary between its collinear and noncollinear phases. Via a small piezoelectric strain, the spin structure of this composition-boundary metal is reversibly interconverted, leading to a large nonvolatile room-temperature resistance modulation that is two orders of magnitude greater than the anisotropic magnetoresistance effect for a metal, mimicking the well-established phase change memory from a quantum spin degree of freedom. In addition, this antiferromagnetic spin phase change memory exhibits remarkable time and temperature stabilities, and is robust in a magnetic field high up to 60 T.

2.
Adv Mater ; 36(14): e2310379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183310

RESUMO

Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.

3.
Nano Lett ; 24(2): 584-591, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165127

RESUMO

Cu2S likely plays an important role in the sharp resistivity transition of LK-99. Nevertheless, this immediately arouses an intriguing question of whether the extraordinary room-temperature colossal magnetoresistance in the initial reports, which has been less focused, originates from Cu2S as well. To resolve this issue, we have systematically investigated the electrical transport and magnetotransport properties of near-stoichiometric Cu2S pellets and thin films. Neither Cu2S nor LK-99 containing Cu2S in this study was found to exhibit the remarkable magnetoresistance effect implied by Lee et al. This implies that Cu2S could not account for all of the intriguing transport properties of the initially reported LK-99, and the initially reported LK-99 samples might contain magnetic impurities. Moreover, based on the crystal-structure-sensitive electrical properties of Cu2S, we have constructed a piezoelectric-strain-controlled device and obtained a giant and reversible resistance modulation of 2 orders of magnitude at room temperature, yielding a huge gauge factor of 160,000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...