Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 134: 112205, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718659

RESUMO

Current methods for delivering genes to target tumors face significant challenges, including off-target effects and immune responses against delivery vectors. In this study, we developed a novel approach using messenger RNA (mRNA) to encode IL11RA for local immunotherapy, aiming to harness the immune system to combat tumors. Our research uncovered a compelling correlation between IL11RA expression and CD8 + T cell levels across multiple tumor types, with elevated IL11RA expression correlating with improved overall survival. Examination of the Pan-Cancer Atlas dataset showed a significant reduction in IL11RA expression in various cancer types compared to normal tissue, raising questions about its potential role in tumorigenesis. To achieve efficient in vivo expression of IL11RA, we synthesized two mRNA sequences mimicking the wild-type protein. These mRNA sequences were formulated and capped to ensure effective delivery, resulting in robust expression within tumor sites. Our investigation into IL11RA mRNA therapy demonstrated its effectiveness in controlling tumor growth when administered both intratumorally and intravenously in mouse models. Additionally, IL11RA mRNA treatment significantly stimulated the expansion of CD8 + T cells within tumors, draining lymph nodes, and the spleen. Transcriptome analysis revealed distinct transcriptional patterns associated with T cell functions. Using multiple deconvolution algorithms, we found substantial infiltration of CD8 + T cells following IL11RA mRNA treatment, highlighting its immunomodulatory effects within the tumor microenvironment. In conclusion, IL11RA mRNA therapy presents a promising strategy for tumor regression with potential immunomodulatory effects and clinical implications for improved survival outcomes.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Feminino , Subunidade alfa de Receptor de Interleucina-11/genética , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica
2.
Int J Biol Macromol ; 270(Pt 2): 132433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759861

RESUMO

Nanopore direct RNA sequencing provided a promising solution for unraveling the landscapes of modifications on single RNA molecules. Here, we proposed NanoMUD, a computational framework for predicting the RNA pseudouridine modification (Ψ) and its methylated analog N1-methylpseudouridine (m1Ψ), which have critical application in mRNA vaccination, at single-base and single-molecule resolution from direct RNA sequencing data. Electric signal features were fed into a bidirectional LSTM neural network to achieve improved accuracy and predictive capabilities. Motif-specific models (NNUNN, N = A, C, U or G) were trained based on features extracted from designed dataset and achieved superior performance on molecule-level modification prediction (Ψ models: min AUC = 0.86, max AUC = 0.99; m1Ψ models: min AUC = 0.87, max AUC = 0.99). We then aggregated read-level predictions for site stoichiometry estimation. Given the observed sequence-dependent bias in model performance, we trained regression models based on the distribution of modification probabilities for sites with known stoichiometry. The distribution-based site stoichiometry estimation method allows unbiased comparison between different contexts. To demonstrate the feasibility of our work, three case studies on both in vitro and in vivo transcribed RNAs were presented. NanoMUD will make a powerful tool to facilitate the research on modified therapeutic IVT RNAs and provides useful insight to the landscape and stoichiometry of pseudouridine and N1-pseudouridine on in vivo transcribed RNA species.


Assuntos
Pseudouridina , Análise de Sequência de RNA , Pseudouridina/química , Análise de Sequência de RNA/métodos , RNA/química , Nanoporos , Redes Neurais de Computação , Sequenciamento por Nanoporos/métodos
3.
Proteins ; 90(11): 1851-1872, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35514069

RESUMO

The revelation of protein folding is a challenging subject in both discovery and description. Except for acquirement of accurate 3D structure in protein stable state, another big hurdle is how to discover structural flexibility for protein innate character. Even if a huge number of flexible conformations are known, difficulty is how to represent these conformations. A novel approach, protein structure fingerprint, has been developed to expose the comprehensive local folding variations, and then construct folding conformations for entire protein. The backbone of five amino acid residues was identified as a universal folden, and then a set of Protein Folding Shape Code (PFSC) was derived for completely covering folding space in alphabetic description. Sequentially, a database was created to collect all possible folding shapes of local folding variations for all permutation of five amino acids. Successively, Protein Folding Variation Matrix (PFVM) assembled all possible local folding variations along sequence for a protein, which possesses several prominent features. First, it showed the fluctuation with certain folding patterns along sequence which revealed how the protein folding was related the order of amino acids in sequence. Second, all folding variations for an entire protein can be simultaneously apprehended at a glance within PFVM. Third, all conformations can be determined by local folding variations from PFVM, so total number of conformations is no longer ambiguous for any protein. Finally, the most possible folding conformation and its 3D structure can be acquired according PFVM for protein structure prediction. Therefore, the protein structure fingerprint approach provides a significant means for investigation of protein folding problem.


Assuntos
Dobramento de Proteína , Proteínas , Sequência de Aminoácidos , Aminoácidos , Conformação Proteica , Proteínas/química
5.
Microbes Environ ; 32(3): 234-243, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28781346

RESUMO

The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ≥97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named "Candidatus Smithella cisternae strain M82_1". Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the ß-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/classificação , Campos de Petróleo e Gás/microbiologia , Deltaproteobacteria/isolamento & purificação , Metagenoma
6.
Wei Sheng Wu Xue Bao ; 54(12): 1453-61, 2014 Dec 04.
Artigo em Chinês | MEDLINE | ID: mdl-25876331

RESUMO

OBJECTIVE: To evaluate the effects of pH on methane production from acetate and the methanogenic community structures. METHODS: Solutions of phosphate (PB), 2-hydroxyethyl (HEPES), NaHCO3/CO2 or piperazine-1,4-bisethanesulfonic acid (PIPES) were added into the methanogenic cultures, separately. The substrate consumption was determined by monitoring cumulative methane production, the methanogenic community structuresin the stationary-phase cultures were analyzed using terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA gene fragments. RESULTS: The period of lag phase of methane production in the PB addition culture (ca. 40 d) was much longer than that in other pH buffer cultures (20 - 24 d, P < 0.05). Approximate 88.3% of acetate was converted into methane in the NaHCO3/CO2 addition culture, while the value decreased to 77% - 81% in other pH buffer cultures (P < 0.05). The maximum specific methane production rate was similar between different pH buffer cultures (P > 0.05). The relative abundance of members of unclassified bacteria, Spirochaetaceae and uncultured WWE1 increased to (15.5 ± 9.4)%, (7.3 ± 4.6)% and (17.6 ± 6.3)%, respectively, in the NaHCO3/CO2 addition culture, while synergistaceae decreased to (8.9 ± 8.1)%. In archaeal domain, the acetotrophic methanogen related with Methanosaeta harundinacea became predominant (97 ± 2%) in the PB buffer culture, on the contrary, the concurrence of M. harundinacea, M. concilii and hydrogenotrophic methanogen related with Methanobacteriales were detected in the cultures amended with HEPES, PIPES and NaHCO3/CO2. CONCLUSION: PB retarded the methane production in the acetatemethanogenic culture, NaHCO3/CO2 addition improve methane production from acetate, the pH buffers had not obvious effects on the maximum specific methane production rate of the cultures, the microbial community structures obviously changed along with PB and NaHCO3/CO2 addition. The research would help us to design suitable condition for the growth of methanogenic culture.


Assuntos
Acetatos/metabolismo , Bactérias/metabolismo , Metano/biossíntese , Soluções Tampão , Concentração de Íons de Hidrogênio , Fosfatos/farmacologia , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...