Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; : 105278, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39395685

RESUMO

Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.

2.
J Gen Virol ; 105(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39392059

RESUMO

The emergence of Singapore grouper iridovirus (SGIV) has caused huge losses to grouper farming. SGIV is a DNA virus and belongs to the genus Ranavirus. Groupers infected with SGIV showed haemorrhaging and swelling of the spleen, with a mortality rate of more than 90% within a week. Therefore, it is of great significance to study the escape mechanism of SGIV from host innate immunity for the prevention and treatment of viral diseases in grouper. In this study, the viral proteins that interact with EccGAS were identified by mass spectrometry, and the SGIV VP12 protein that inhibits cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated antiviral innate immunity was screened by the dual-luciferase reporter gene assay. VP12 belongs to the late gene of the virus. The immunofluorescence analysis demonstrated that VP12 was aggregated and distributed in the cytoplasm during the early stage of virus infection and translocated into the nucleus at the late stage of virus infection. VP12 inhibited the activation of IFN3, ISRE and NF-κB promoter activities mediated by cGAS-STING, EcTBK1 and EcIRF3. Quantitative real-time PCR analysis showed that VP12 inhibited the expression of interferon-related genes, including those mediated by cGAS-STING. VP12 enhanced the inhibition of IFN3, ISRE and NF-κB promoter activity by EccGAS, EccGAS-mab-21 and EccGAS-delete-mab21. The interaction between VP12 and EccGAS was found to be domain independent. The immunoprecipitation results demonstrated that VP12 interacted and co-localized with EccGAS, EcTBK1 and EcIRF3. VP12 degraded the protein levels of EcTBK1 and EcIRF3 and degraded EcIRF3 through the protease pathway. These results suggest that SGIV VP12 protein escapes the cGAS-STING signalling pathway and degrades EcIRF3 protein expression through the protease pathway.


Assuntos
Infecções por Vírus de DNA , Imunidade Inata , Proteínas de Membrana , Nucleotidiltransferases , Ranavirus , Transdução de Sinais , Animais , Ranavirus/imunologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Evasão da Resposta Imune , Interações Hospedeiro-Patógeno/imunologia
3.
Chin Med ; 19(1): 122, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252102

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) has been hailed as a rich source of medicine, but many types of herbs and their functions still need to be rapidly discovered and elucidated. HerboChip, a target-based drug screening platform, is an array of different fractions deriving from herbal extracts. This study was designed to identify effective components from TCM that interact with vascular endothelial growth factor (VEGF) as a target using HerboChip. METHODS: Selected TCMs that are traditionally used as remedies for cancer prevention and wound healing were determined and extracted with 50% ethanol. Biotinylated-VEGF was hybridized with over 500 chips coated with different HPLC-separated fractions from TCM extracts and straptavidin-Cy5 was applied to identify plant extracts containing VEGF-binding fractions. Cytotoxicity of selected herbal extracts and their activities on VEGF-mediated angiogenic functions were evaluated. RESULTS: Over 500 chips were screened within a week, and ten positive hits were identified. The interaction of the identified herbal extracts with VEGF was confirmed in cultured endothelial cells. The identified herbs promoted or inhibited VEGF-mediated cell proliferation, migration and tube formation. Results from western blotting analysis demonstrated the identified herbal extracts significantly affected VEGF-triggered phosphorylations of eNOS, Akt and Erk. Five TCMs demonstrated potentiating activities on the VEGF response and five TCMs revealed suppressive activities. CONCLUSIONS: The current results demonstrated the applicability of the HerboChip platform and systematically elucidated the activity of selected TCMs on angiogenesis and its related signal transduction mechanisms.

5.
J Agric Food Chem ; 72(39): 21610-21623, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39292861

RESUMO

Fucoxanthin, a dietary carotenoid, is predominantly found in edible brown algae and is commonly consumed worldwide. Fucoxanthin has been shown to possess beneficial health activities such as antidiabetic, anti-inflammatory, antimutagenic, and antiobesity; however, the effects of fucoxanthin on VEGF-mediated angiogenesis and its possible binding with VEGF are unknown. Here, different lines of evidence supported the suppressive roles of fucoxanthin in VEGF-mediated angiogenesis. In human umbilical vein endothelial cells, fucoxanthin remarkedly suppressed VEGF-mediated cell proliferative, migration, and invasive abilities, as well as tube formation, without cytotoxicity. In addition, fucoxanthin inhibited the subintestinal vessel formation of zebrafish in vivo. In signaling cascades, fucoxanthin was proposed to interact with VEGF, thus attenuating VEGF's functions in activating the VEGF receptor and its related downstream signaling, i.e., phosphorylations of MEK and Erk. Fucoxanthin also significantly blocked VEGF-triggered ROS formation. Furthermore, the outcomes of applying fucoxanthin in cancer cells were identified, which included (i) inhibiting VEGF-mediated cell proliferation and migration and (ii) inhibiting NF-κB translocation via limiting MMP2 expression. These lines of investigations supported the antiangiogenic roles of fucoxanthin, as well as reviewing its signaling mechanisms, in blocking the VEGF-triggered responses. The results would benefit the potential development of fucoxanthin for the prevention and treatment of angiogenesis-related diseases.


Assuntos
Movimento Celular , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Xantofilas , Peixe-Zebra , Humanos , Xantofilas/farmacologia , Xantofilas/química , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Phaeophyceae/química , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Angiogênese
6.
Fish Shellfish Immunol ; 153: 109837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147179

RESUMO

NLRP3 has an important role in the immune response and viral infection as an essential inflammasome component. However, it is unclear whether the grouper immune system is regulated by NLRP3 inflammasome. In this study, we cloned the NLRP3 gene from Epinephelus coioides. Ec-NLRP3 encodes 893 amino acids and contains two major structural domains, the NACHT domain (69-234aa) and the LRR domain (477-893aa). Tissue distribution analysis showed that Ec-NLRP3 was expressed in all tissues tested, with the spleen exhibiting the highest expression. Additionally, after being infected with SGIV, the expression of the Ec-NLRP3 gene was significantly increased. The results of subcellular localization revealed that Ec-NLRP3 was distributed throughout GS cells. In addition, Ec-NLRP3 co-localized with Ec-ASC and was observed as a cytosolic speck. Ec-NLRP3 overexpression significantly inhibited SGIV infection, which was further inhibited by co-overexpression of Ec-NLRP3 and Ec-ASC. Further studies revealed that overexpression of Ec-NLRP3 significantly upregulated caspase-1 activity, and co-overexpression of Ec-NLRP3 and Ec-ASC further upregulated caspase-1 activity. In addition, inhibition of Caspase-1 activity with VX-765 significantly increased the infection of SGIV. Furthermore, the NLRP3 inflammasome activator Nigericin was able to inhibit the infection of SGIV significantly. The above findings suggest that Ec-NLRP3 inhibits SGIV infection by upregulating caspase-1 activity.


Assuntos
Bass , Caspase 1 , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Filogenia , Alinhamento de Sequência , Regulação para Cima , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Bass/imunologia , Bass/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Caspase 1/genética , Caspase 1/imunologia , Caspase 1/metabolismo , Sequência de Aminoácidos , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Perfilação da Expressão Gênica/veterinária , Iridoviridae
7.
Fish Shellfish Immunol ; 153: 109855, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181523

RESUMO

Singapore grouper iridovirus (SGIV) always causes high transmission efficiency and mortality in the larval and juvenile stages of grouper in aquaculture industry. Although inactivated virus and recombinant DNA vaccines administered via intraperitoneal injection have shown efficacy in protection against SGIV, their potential applications in field testing were limited due to the vaccine delivery methods. Here, we developed an immersion vaccine containing inactivated virus and Montanide IMS 1312 adjuvant (IMS 1312) and evaluated its protective efficacy against SGIV infection. Compared to the PBS group, fish vaccinated with immersion inactivated vaccine with or without IMS 1312 were significantly protected against SGIV, with a relative percent survival (RPS) of 57.69 % and 38.47 %, respectively. Furthermore, the transcripts of viral core genes were reduced, and the histopathological severity caused by SGIV were relatively mild in multiple tissues of the IMS + V group. The immersion vaccine activated the AKP and ACP activities and increased the mRNA levels of IFN and inflammation-associated genes. The transcriptome analysis showed that a total of 731 and 492 genes were significantly regulated in the spleen and kidney from the IMS + V group compared to the PBS group, respectively. Among them, 129 DEGs were co-regulated, and enriched in the KEGG pathways related to immune and cell proliferation, including MAPK signaling, JAK-STAT signaling and PI3K-Akt signaling pathways. Similarly, the DEGs specially regulated in the kidney and spleen upon vaccine immunization were significantly enriched in the KEGG pathways related to interferon and inflammation response. Together, our results elucidated that the immersion vaccine of inactivated SGIV with IMS 1312 induced a protective immune response of grouper against SGIV.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Ranavirus , Vacinas de Produtos Inativados , Vacinas Virais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/virologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/prevenção & controle , Ranavirus/fisiologia , Ranavirus/imunologia , Bass/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Imunidade Inata , Imersão
8.
Fish Shellfish Immunol ; 153: 109822, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117128

RESUMO

T-cell/transmembrane immunoglobulin and mucin domain-containing (TIM) protein family has attracted particular attention because of their broad immune functions and the response to viral infections. TIM-1, a member of the TIM family, has been demonstrated to play an important role in viral infections. However, its roles during fish nodavirus infection still remained largely unknown. In this study, a homolog of TIM-1 from orange-spotted grouper (Epinephelus coioides) (EcTIM-1) was identified, and characterized. EcTIM-1 encoded a 217-amino acids protein, containing one Immunoglobulin domain. Homology analysis showed that EcTIM-1 shared 98.62 % and 42.99 % identity to giant grouper (E. lanceolatus) and human (Homo sapiens). Quantitative Real-time PCR analyses indicated that EcTIM-1 was expressed in all examined tissues, with higher expression in liver, spleen, skin, and heart, and was significantly up-regulated in response to red-spotted grouper nervous necrosis virus (RGNNV) infection. EcTIM-1 was distributed in the cytoplasm, and partly co-localized with Golgi apparatus and lysosomes in vitro. The ectopic expression of EcTIM-1 promoted RGNNV replication by increasing the level of viral genes transcription and protein synthesis. Besides, overexpression of EcTIM-1 decreased the luciferase activity of type I interferon (IFN1), interferon stimulated response elements (ISRE) and nuclear factor kappa-B (NF-κB) promoters, as well as the transcription of pro-inflammatory factors and interferon related genes. EcTIM-1 significantly suppressed the luciferase activity of IFN1, ISRE and NF-κB promoters evoked by Epinephelus coioides melanoma differentiation-associated gene 5 (EcMDA5), mitochondrial antiviral signaling protein (EcMAVS), stimulator of IFN genes (EcSTING) or TANK-binding kinase 1 (EcTBK1). Collectively, EcTIM-1 negatively regulated interferon and inflammatory response to promote RGNNV infection. These results provide a basis for a better understanding of the innate immune response of TIM-1 in fish.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nodaviridae , Filogenia , Infecções por Vírus de RNA , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Nodaviridae/fisiologia , Bass/imunologia , Bass/genética , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Inflamação/veterinária , Inflamação/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária
9.
J Hazard Mater ; 478: 135597, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182289

RESUMO

Novel pollutants nanoplastics (NPs) are widely distributed in aquatic environments and may pose a health threat to aquatic organisms. Notably, the contribution of NPs to the occurrence of viral diseases in aquatic animals remains largely uncertain. In this study, the effects of polystyrene nanoplastics (PS-NPs) on Largemouth bass ranavirus (LMBV)-infected MsF cells were investigated. MsF cells took up PS-NPs in a time- and dose-dependent manner and significantly affect cell viability at an exposure concentration of 500 µg/mL. Western blot and qPCR assays indicated that exposure to PS-NPs accelerated LMBV replication in MsF cells. PS-NPs act synergistically with LMBV to disrupt the cellular antioxidant system, as evidenced by increased ROS production and decreased mRNA levels of antioxidant-associated genes. Furthermore, PS-NPs was found to exacerbate LMBV-induced inflammatory responses, as demonstrated by disturbed expression of inflammation-related factors. In addition, our results suggest that PS-NPs reduce IFN production by inhibiting the expression of molecules related to the cGAS-STING signaling pathway, thereby promoting viral replication. Collectively, our findings suggest the potential threat of NPs to infectious diseases caused by freshwater fish viruses and provide new insights for fish disease prevention and control.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Poliestirenos , Ranavirus , Replicação Viral , Animais , Ranavirus/efeitos dos fármacos , Bass/virologia , Poliestirenos/toxicidade , Poliestirenos/química , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Replicação Viral/efeitos dos fármacos , Doenças dos Peixes/virologia , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Linhagem Celular
10.
Fish Shellfish Immunol ; 152: 109774, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019127

RESUMO

Singapore grouper iridovirus (SGIV) belongs to the family Iridoviridae and the genus Ranavirus, which is a large cytoplasmic DNA virus. Infection of grouper with SGIV can cause hemorrhage and swelling of the spleen of the fish. Previous work on genome annotation demonstrated that SGIV contained numerous uncharacterized or hypothetical open reading frames (ORFs), whose functions remained largely unknown. In the present study, the protein encoded by SGIV ORF128 (VP128) was identified. VP128 is predominantly localized within the endoplasmic reticulum (ER). Overexpression of VP128 significantly promoted SGIV replication. VP128 inhibited the interferon (IFN)-3 promoter activity and mRNA level of IFN-related genes induced by poly(I:C), Epinephelus coioides cyclic GMP/AMP synthase (EccGAS)/stimulator of IFN genes (EcSTING), and TANK-binding kinase 1 (EcTBK1). Moreover, VP128 interacted with EcSTING and EcTBK1. The interaction between VP128 and EcSTING was independent of any specific structural domain of EcSTING. Together, our results demonstrated that SGIV VP128 negatively regulated the IFN response by inhibiting EcSTING-EcTBK1 signaling for viral evasion.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Ranavirus , Transdução de Sinais , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Ranavirus/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Transdução de Sinais/imunologia , Imunidade Inata/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos
11.
Fish Shellfish Immunol ; 152: 109784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067495

RESUMO

Exocyst, a protein complex, plays a crucial role in various cellular functions, including cell polarization, migration, invasion, cytokinesis, and autophagy. Sec3, known as Exoc1, is a key subunit of the Exocyst complex and can be involved in cell survival and apoptosis. In this study, two subtypes of Sec3 were isolated from Epinephelus coioides, an important marine fish in China. The role of E. coioides Sec3 was explored during Singapore grouper iridovirus (SGIV) infection, an important pathogen of marine fish which could induce 90 % mortality. E. coioides Sec3 sequences showed a high similarity with that from other species, indicating the presence of a conserved Sec3 superfamily domain. E. coioides Sec3 mRNA could be detected in all examined tissues, albeit at varying expression levels. SGIV infection could upregulate E. coioides Sec3 mRNA. Upregulated Sec3 significantly promoted SGIV-induced CPE, and the expressions of viral key genes. E. coioides Sec3 could inhibit the activation of NF-κB and AP-1, as well as SGIV-induced cell apoptosis. The results illustrated that E. coioides Sec3 promotes SGIV infection by regulating the innate immune response.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Filogenia , Ranavirus , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Imunidade Inata/genética , Bass/imunologia , Ranavirus/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária
12.
Fish Shellfish Immunol ; 151: 109748, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964434

RESUMO

The high mortality rate of Singapore grouper iridovirus (SGIV) posing a serious threat to the grouper aquaculture industry and causing significant economic losses. Therefore, finding effective drugs against SGIV is of great significance. Eugenol (C10H12O2) is a phenolic aromatic compound, has been widely studied for its anti-inflammatory, antioxidant and antiviral capacity. In this study, we explored the effect of eugenol on SGIV infection and its possible mechanisms using grouper spleen cells (GS) as an in vitro model. We found that treatment of GS cells with 100 µM eugenol for 4 h exhibited the optimal inhibitory effect on SGIV. Eugenol was able to reduce the expression level of inflammatory factors by inhibiting the activation of MAPK pathway and also inhibited the activity of NF-κB and AP-1 promoter. On the other hand, eugenol attenuated cellular oxidative stress by reducing intracellular ROS and promoted the expression of interferon-related genes. Therefore, we conclude that eugenol inhibits SGIV infection by enhancing cellular immunity through its anti-inflammatory and antioxidant functions.


Assuntos
Antivirais , Bass , Infecções por Vírus de DNA , Eugenol , Doenças dos Peixes , Ranavirus , Animais , Eugenol/farmacologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Antivirais/farmacologia , Bass/imunologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/tratamento farmacológico , Ranavirus/fisiologia , Baço/imunologia , Baço/efeitos dos fármacos , Baço/citologia , Células Cultivadas
13.
Fish Shellfish Immunol ; 151: 109750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969153

RESUMO

The largemouth bass has become one of the economically fish in China, according to the latest China Fishery Statistical Yearbook. The farming scale is constantly increasing. Salidroside has been found in past studies to have oxidative stress reducing and immune boosting properties. In this study, the addition of six different levels of salidroside supplements were 0、40、80、120、160 and 200 mg/kg. A 56-day feeding trial was conducted to investigate the effects of salidroside on the intestinal health, immune parameters and intestinal microbiota composition of largemouth bass. Dietary addition of salidroside significantly affected the Keap-1ß/Nrf-2 pathway as well as significantly increased antioxidant enzyme activities resulting in a significant increase in antioxidant capacity of largemouth bass. Dietary SLR significantly reduced feed coefficients. The genes related to tight junction proteins (Occludin, ZO-1, Claudin-4, Claudin-5) were found to be significantly upregulated in the diet supplemented with salidroside, indicating that salidroside can improve the intestinal barrier function (p < 0.05). The dietary administration of salidroside was found to significantly reduce the transcription levels of intestinal tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) (p < 0.05). Furthermore, salidroside was observed to reduce the transcription levels of intestinal apoptosis factor Bcl-2 associated death promoter (BAD) and recombinant Tumor Protein p53 (P53) (p < 0.05). Concomitantly, the beneficial bacteria, Fusobacteriota and Cetobacterium, was significantly increased in the SLR12 group, while that of pathogenic bacteria, Proteobacteria, was significantly decreased (p < 0.05). In conclusion, the medium-sized largemouth bass optimal dosage of salidroside in the diet is 120mg/kg-1.


Assuntos
Ração Animal , Bass , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Glucosídeos , Fenóis , Animais , Bass/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ração Animal/análise , Dieta/veterinária , Suplementos Nutricionais/análise , Glucosídeos/administração & dosagem , Glucosídeos/farmacologia , Fenóis/administração & dosagem , Fenóis/farmacologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga , Distribuição Aleatória
14.
Biomaterials ; 311: 122699, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38981153

RESUMO

The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE). The EPLQLKM peptide attracts bone marrow-derived mesenchymal stem cells (BMSCs), while the SVVYGLR peptide enhances endothelial progenitor cells (EPCs) vascular differentiation, thus regulating bone metabolism and fostering bone regeneration through the paracrine effects of EPCs. Further mechanistic research demonstrated that PCL-SE promoted the vascularization of EPCs, activating the Notch signaling pathway in BMSCs, leading to the upregulation of osteogenesis-related genes and the downregulation of osteoclast-related genes, thereby restoring bone metabolic balance. Furthermore, PCL-SE facilitated the differentiation of EPCs into "H"-type vessels and the recruitment of BMSCs to synergistically enhance osteogenesis, resulting in the regeneration of normal microvessels and bone tissues in cases of femoral condylar bone defects in osteoporotic SD rats. This study suggests that PCL-SE supports in-situ vascularization, remodels bone metabolic translational balance, and offers a promising therapeutic regimen for osteoporotic bone defects.


Assuntos
Regeneração Óssea , Homeostase , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Osteogênese , Osteoporose , Impressão Tridimensional , Ratos Sprague-Dawley , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Osteoporose/metabolismo , Osteoporose/terapia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/química , Diferenciação Celular/efeitos dos fármacos , Feminino , Ratos , Células Progenitoras Endoteliais/metabolismo , Osso e Ossos/metabolismo
15.
Front Microbiol ; 15: 1398005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841063

RESUMO

In the context of burgeoning global aquaculture, its environmental repercussions, particularly in marine ecosystems, have gained significant attentions. Cage aquaculture, a prominent method, has been observed to significantly influence marine environments by discharging substantial amounts of organic materials and pollutants. It is also one of the important reasons for water eutrophication. This study investigated the impacts of cage aquaculture on microbial diversity and functional potential using metagenomics. Specifically, a comparison was made of the physicochemical indicators and microbial diversity between three grouper aquaculture cage nets in Lingshui Xincun Port and three nearby non-aquaculture area surface waters. We found that compared to non-aquaculture areas, the eutrophication indicators in aquaculture environments significantly increased, and the abundances of Vibrio and Pseudoalteromonas in aquaculture environments significantly rose. Additionally, microbial functional genes related to carbon, nitrogen, and sulfur metabolisms were also found to be significantly affected by aquaculture activities. The correlation analysis between microbial populations and environmental factors revealed that the abundances of most microbial taxa showed positive correlations with dissolved inorganic nitrogen, soluble reactive phosphorus, NH4+, and negative correlations with dissolved oxygen. Overall, this study elucidated the significant impacts of aquaculture-induced eutrophication on the diversity and functions of planktonic bacterial communities.

16.
Fish Shellfish Immunol ; 151: 109684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852788

RESUMO

Singapore grouper iridovirus (SGIV) is a large double-stranded DNA virus that has caused significant economic losses to the grouper aquaculture industry. So far, the structure and function of SGIV proteins have been successively reported. In the present paper, the protein of SGIV VP146 was cloned and identified. VP146 was whole-cell distributed in GS cells. VP146 promoted SGIV replication and inhibited the transcription of interferon-related genes as well as pro-inflammatory cytokines in GS cells. In addition, VP146 was involved in the regulation of the cGAS-STING signaling pathway, and decreased cGAS-STING induced the promoter of ISRE and NF-κB. VP146 interacted with the proteins of cGAS, STING, TBK1, and IRF3 from grouper, but did not affect the binding of grouper STING to grouper TBK1 and grouper IRF3. Interestingly, grouper STING was able to affect the intracellular localization of VP146. Four segment structural domains of grouper STING were constructed, and grouper STING-CTT could affect the intracellular localization of VP146. VP146 had no effect on the self-binding of EcSITNG, nor on the binding of EcSTING to EcTBK1 and EcIRF3. Together, the results demonstrated that SGIV VP146 modulated the cGAS-STING signaling pathway to escape the interferon immune response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Bass , Iridovirus , Nucleotidiltransferases , Transdução de Sinais , Iridovirus/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transdução de Sinais/imunologia , Bass/genética , Bass/imunologia , Bass/virologia , Linhagem Celular , Baço/citologia , Regulação da Expressão Gênica/imunologia , Replicação Viral/imunologia , Interferons/genética , Interferons/imunologia , Proteínas de Peixes/imunologia , Animais
17.
Fish Shellfish Immunol ; 151: 109715, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909637

RESUMO

Red-spotted grouper nervous necrosis virus (RGNNV) is a major viral pathogen of grouper and is able to antagonize interferon responses through multiple strategies, particularly evading host immune responses by inhibiting interferon responses. Ovarian tumor (OTU) family proteins are an important class of DUBs and the underlying mechanisms used to inhibit interferon pathway activation are unknown. In the present study, primers were designed based on the transcriptome data, and the ovarian tumor (OTU) domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) and OTUB2 genes of Epinephelus coioides (EcOTUB1 and EcOTUB2) were cloned and characterized. The homology alignment showed that both EcOTUB1 and EcOTUB2 were most closely related to E. lanceolatus with 98 % identity. Both EcOTUB1 and EcOTUB2 were distributed to varying degrees in grouper tissues, and the transcript levels were significantly up-regulated following RGNNV stimulation. Both EcOTUB1 and EcOTUB2 promoted replication of RGNNV in vitro, and inhibited the promoter activities of interferon stimulated response element (ISRE), nuclear transcription factors kappaB (NF-κB) and IFN3, and the expression levels of interferon related genes and proinflammatory factors. Co-immunoprecipitation experiments showed that both EcOTUB1 and EcOTUB2 could interact with TRAF3 and TRAF6, indicating that EcOTUB1 and EcOTUB2 may play important roles in interferon signaling pathway. The results will provide a theoretical reference for the development of novel disease prevention and control techniques.


Assuntos
Bass , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Nodaviridae , Infecções por Vírus de RNA , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata/genética , Nodaviridae/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/veterinária , Bass/imunologia , Filogenia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/imunologia , Perfilação da Expressão Gênica/veterinária
18.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734119

RESUMO

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Ranavirus , Proteínas Virais , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Ranavirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imunidade Inata/genética , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Bass/genética , Replicação Viral , Proteínas de Peixe-Zebra , Fatores Reguladores de Interferon
19.
Virulence ; 15(1): 2355971, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38745468

RESUMO

The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.


Assuntos
Encéfalo , Doenças dos Peixes , Macrófagos , Nodaviridae , Infecções por Vírus de RNA , Animais , Macrófagos/imunologia , Macrófagos/virologia , Doenças dos Peixes/virologia , Doenças dos Peixes/imunologia , Encéfalo/virologia , Encéfalo/imunologia , Encéfalo/patologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Quimiocina CXCL11 , Receptores CXCR3/metabolismo , Bass/imunologia , Bass/virologia , Transdução de Sinais , Citocinas/metabolismo , Citocinas/imunologia , Proteínas de Peixes/imunologia , Proteínas de Peixes/genética
20.
Zool Res ; 45(3): 520-534, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38682434

RESUMO

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Assuntos
Doenças dos Peixes , Iridovirus , Fígado , Ácido alfa-Linolênico , Animais , Ácido alfa-Linolênico/metabolismo , Doenças dos Peixes/virologia , Doenças dos Peixes/metabolismo , Fígado/metabolismo , Fígado/virologia , Iridovirus/fisiologia , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Metabolômica , Antivirais/farmacologia , Transcriptoma , Reprogramação Metabólica , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...