Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Angew Chem Int Ed Engl ; : e202418269, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365610

RESUMO

The incorporation of transition-metal single atoms as molecular functional entities into the skeleton of graphdiyne (GDY) to construct novel two-dimensional (2D) metal-acetylide frameworks, known as metalated graphynes (MGYs), is a promising strategy for developing efficient catalysts, which can combine the tunable charge transfer of GDY frameworks, the catalytic activity of metal and the precise distribution of single metallic centers. Herein, four highly conjugated MGY photocatalysts based on NiII, PdII, PtII, and HgII were synthesized for the first time using the 'bottom-up' strategy through the use of M-C bonds (-C≡C-M-C≡C-). Remarkably, the NiII-based graphyne (TEPY-Ni-GY) exhibited the highest CO generation rate of 18.3 mmol g-1 h-1 and a selectivity of 98.8%. This superior performance is attributed to the synergistic effects of pyrenyl and -C≡C-Ni(PBu3)2-C≡C- moieties. The pyrenyl block functions as an intramolecular π-conjugation channel, facilitating kinetically favorable electron transfer, while the -C≡C-Ni(PBu3)2-C≡C- moiety serves as the catalytic site that enhances CO2 adsorption and activation, thereby suppressing competitive hydrogen evolution. This study provides a new perspective on MGY-based photocatalysts for developing highly active and low-cost catalysts for CO2 reduction.

2.
J Orthop Surg Res ; 19(1): 468, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118178

RESUMO

OBJECTIVE: This study aims to investigate the anatomical structure of the C6 pedicle and lateral mass in children aged 0-14 years using CT imaging, providing detailed insights into their growth and development. METHODS: We conducted a comprehensive measurement of C6. Measurements included width, length, and height of the pedicles, as well as the length, width, and thickness of the lateral masses, and several angular metrics. Regression analysis was performed to understand the growth trends, and statistical analyses were carried out to identify differences between age groups, genders, and sides. RESULTS: In children younger than four years, the pedicle width exceeds its height, influencing the diameter of the pedicle screws. By age two to three, the pedicle height and lateral mass thickness reaches 3.0 mm, allowing for the use of 3.0 mm diameter screws. The pedicle transverse angle remains stable. Most parameters showed no significant differences between the left and right sides. Size parameters exhibited significant larger in males than females at ages 0-1, 3-7, and 10-12 years. Regression analysis revealed that the growth trends of size parameters follow cubic or polynomial curves. Most angular metrics follow cubic fitting curves without a clear trend of change with age. CONCLUSION: This study provides a detailed analysis of the anatomical development of the C6 pedicle and lateral masses in children, offering valuable insights for pediatric cervical spine surgeries. The findings highlight the importance of considering age-specific anatomical variations when planning posterior surgical fixation, specifically at C6. It is necessary for us to perform thin-layer CT scans on children and carefully measure various indicators before surgery.


Assuntos
Vértebras Cervicais , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Lactente , Criança , Pré-Escolar , Adolescente , Tomografia Computadorizada por Raios X/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/anatomia & histologia , Vértebras Cervicais/cirurgia , Vértebras Cervicais/crescimento & desenvolvimento , Recém-Nascido , Parafusos Pediculares , Fatores Etários
3.
Am J Transl Res ; 16(7): 3171-3181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114733

RESUMO

BACKGROUND: Children with cerebral palsy often experience inadequate nutritional intake due to factors like anorexia, intellectual impairments, underdeveloped motor skills of the oral sensory system, and eating and swallowing disorders. These challenges not only hinder their rehabilitation but also impose various degrees of burden on society and their families. Addressing malnutrition in children with cerebral palsy has become a pressing international clinical issue. This study assessed the nutritional status of children with cerebral palsy and examined the impact of a high-calorie enteral nutrition formula as a nutritional intervention. METHODS: This retrospective study involved 132 malnourished children with cerebral palsy undergoing rehabilitation at the First People's Hospital of Yulin City from July 2020 to July 2023. Sixty-six children received conventional nutritional interventions after their parents were educated and trained in dietary practices and feeding techniques, forming the general group. The other sixty-six children were given a high-calorie intact protein or short peptide enteral nutrition formula milk powder (Nuiren JUNIOR or Peptamen Junior), and were referred to as the nutrient group. Data on anthropometric measurements, blood indicators, gross motor function, and adverse events were collected at baseline, three months, and six months. RESULTS: After 6 months of intervention, both groups showed improvements in height, weight, weight-for-height Z-score, weight-for-age Z-score and gross motor function. There were statistical differences in height change, body mass index-for-age Z-score, and gross motor function between the two groups (P<0.05). The efficiency of nutritional intervention was significantly higher in the nutrient group than in the general group (P<0.05). In addition, total albumin, albumin, prealbumin, and 25-hydroxyvitamin D levels were higher in the nutrient group than in the general group (P<0.05). An incidence of side effects was observed in 15.15% of the children in the general group and 9.09% in the nutrient group, without significant difference (χ2=1.138, P=0.286). CONCLUSION: High-calorie whole protein or peptide nutritional formulas can significantly improve malnutrition and enhance gross motor function development in children with cerebral palsy and has a low incidence of adverse events. These interventions hold promise for broader clinical application.

4.
Int Immunopharmacol ; 142(Pt A): 113027, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39216119

RESUMO

OBJECTIVE: This study aimed to elucidate the causal relationships between antibodies and autoimmune diseases using Mendelian randomization (MR). METHODS: Data on 46 antibodies were obtained from genome-wide association studies (GWAS). Autoimmune disease data were sourced from the FinnGen consortium and the IEU OpenGWAS project. Inverse-variance weighted (IVW) analysis was the primary method, supplemented by heterogeneity and sensitivity analyses. We also examined gene expression near significant SNPs and conducted drug sensitivity analyses. RESULTS: Antibodies and autoimmune diseases exhibit diverse interactions. Antibodies produced after Polyomavirus infection tend to increase the risk of several autoimmune diseases, while those following Human herpesvirus 6 infection generally reduce it. The impact of Helicobacter pylori infection varies, with different antibodies affecting autoimmune diseases in distinct ways. Overall, antibodies significantly influence the risk of developing autoimmune diseases, whereas autoimmune diseases have a lesser impact on antibody levels. Gene expression and drug sensitivity analyses identified multiple genes and drugs as potential treatment options for ankylosing spondylitis (AS), with the AIF1 gene being particularly promising. CONCLUSIONS: Bidirectional MR analysis confirms complex causal relationships between various antibodies and autoimmune diseases, revealing intricate patterns of post-infection antibody interactions. Several drugs and genes, notably AIF1, show potential as candidates for AS treatment, offering new avenues for research. Further exploration of the underlying mechanisms is necessary.


Assuntos
Doenças Autoimunes , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Espondilite Anquilosante/genética , Espondilite Anquilosante/imunologia
5.
Curr Gene Ther ; 24(5): 347-355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005061

RESUMO

Hepatocyte growth factor (HGF) is expressed in multiple systems and mediates a variety of biological activities, such as mitosis, motility, and morphogenesis. A growing number of studies have revealed the expression patterns and functions of HGF in ovarian and testicular physiology from the prenatal to the adult stage. HGF regulates folliculogenesis and steroidogenesis by modulating the functions of theca cells and granulosa cells in the ovary. It also mediates somatic cell proliferation and steroidogenesis, thereby affecting spermatogenesis in males. In addition to its physiological effects on the reproductive system, HGF has shown advantages in preclinical studies over recent years for the treatment of male and female infertility, particularly in women with premature ovarian insufficiency. This review aims to summarize the pleiotropic functions of HGF in the reproductive system and to provide prospects for its clinical application.


Assuntos
Fator de Crescimento de Hepatócito , Humanos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Feminino , Masculino , Reprodução/genética , Animais , Ovário/metabolismo , Espermatogênese , Testículo/metabolismo , Células da Granulosa/metabolismo
6.
J Colloid Interface Sci ; 673: 826-835, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38908282

RESUMO

Improving the separation efficiency of carriers is an important part of enhancing photocatalytic activity. Herein, we successfully decorated metallic 1T phase tungsten disulfide (1T-WS2) on the surface of zinc indium sulfide (ZnIn2S4) and investigated the synergistic effect of 1T-WS2 on ZnIn2S4. The characterization results show that 1T-WS2 improves the light absorption capacity and utilization efficiency, increases the catalytic active site, improves the photogenerated charge separation efficiency, and optimizes the reduction potential of ZnIn2S4. Theoretical calculations show that compared with ZnIn2S4, 1T-WS2/ZnIn2S4 has a smaller adsorption Gibbs free energy of the intermediate state H*, which is conducive to the catalytic reaction. Under simulated solar irradiation, the hydrogen (H2) production rate of 1T-WS2/ZnIn2S4 with a loading of 12 wt% reaches 30.90 mmol h-1 g-1, which is 3.38 times higher than that of single ZnIn2S4 (9.13 mmol h-1 g-1). In addition, the apparent quantum efficiency of 1T-WS2/ZnIn2S4 with a loading of 12 wt% reaches 21.14 % under monochromatic light at a wavelength of λ = 370 nm. This work analyzes the light absorption and carrier separation to the catalytic site, and elucidates the mechanism for the enhancement of the photocatalytic hydrogen production performance.

7.
EMBO J ; 43(14): 3044-3071, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858601

RESUMO

MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.


Assuntos
RNA Helicases DEAD-box , Instabilidade Genômica , Proteínas de Manutenção de Minicromossomo , Estruturas R-Loop , Animais , Feminino , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Dano ao DNA , Células Germinativas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Estruturas R-Loop/genética
8.
Sci China Life Sci ; 67(7): 1325-1337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874713

RESUMO

Premature ovarian insufficiency (POI) is a heterogeneous female disorder characterized by the loss of ovarian function before the age of 40. It represents a significant detriment to female fertility. However, the known POI-causative genes currently account for only a fraction of cases. To elucidate the genetic factors underlying POI, we conducted whole-exome sequencing on a family with three fertile POI patients and identified a deleterious missense variant in RNF111. In a subsequent replication study involving 1,030 POI patients, this variant was not only confirmed but also accompanied by the discovery of three additional predicted deleterious RNF111 variants. These variants collectively account for eight cases, representing 0.78% of the study cohort. A further study involving 500 patients with diminished ovarian reserve also identified two additional RNF111 variants. Notably, RNF111 encodes an E3 ubiquitin ligase with a regulatory role in the TGF-ß/BMP signaling pathway. Our analysis revealed that RNF111/RNF111 is predominantly expressed in the oocytes of mice, monkeys, and humans. To further investigate the functional implications of RNF111 variants, we generated two mouse models: one with a heterozygous missense mutation (Rnf111+/M) and another with a heterozygous null mutation (Rnf111+/-). Both mouse models exhibited impaired female fertility, characterized by reduced litter sizes and small ovarian reserve. Additionally, RNA-seq and quantitative proteomics analysis unveiled that Rnf111 haploinsufficiency led to dysregulation in female gonad development and negative regulation of the BMP signaling pathway within mouse ovaries. In conclusion, our findings strongly suggest that monoallelic deleterious variants in RNF111 can impair female fertility and induce POI in both humans and mice.


Assuntos
Fertilidade , Insuficiência Ovariana Primária , Ubiquitina-Proteína Ligases , Feminino , Humanos , Animais , Insuficiência Ovariana Primária/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos , Fertilidade/genética , Sequenciamento do Exoma , Mutação de Sentido Incorreto , Modelos Animais de Doenças , Ovário/metabolismo , Adulto , Oócitos/metabolismo , Reserva Ovariana/genética , Transdução de Sinais
9.
Immun Inflamm Dis ; 12(5): e1264, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780041

RESUMO

AIM: Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS: Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS: Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS: HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.


Assuntos
Carcinoma Hepatocelular , Células Dendríticas , Neoplasias Hepáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Metástase Neoplásica , Transcriptoma , Receptores CCR7/genética , Receptores CCR7/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Linfócitos T Reguladores/imunologia , Prognóstico , Biologia Computacional/métodos , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo
10.
Genes (Basel) ; 15(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674410

RESUMO

WUSCHEL-related homeobox (WOX) transcription factors are unique to plants and play pivotal roles in plant development and stress responses. In this investigation, we acquired protein sequences of foxtail millet WOX gene family members through homologous sequence alignment and a hidden Markov model (HMM) search. Utilizing conserved domain prediction, we identified 13 foxtail millet WOX genes, which were classified into ancient, intermediate, and modern clades. Multiple sequence alignment results revealed that all WOX proteins possess a homeodomain (HD). The SiWOX genes, clustered together in the phylogenetic tree, exhibited analogous protein spatial structures, gene structures, and conserved motifs. The foxtail millet WOX genes are distributed across 7 chromosomes, featuring 3 pairs of tandem repeats: SiWOX1 and SiWOX13, SiWOX4 and SiWOX5, and SiWOX11 and SiWOX12. Collinearity analysis demonstrated that WOX genes in foxtail millet exhibit the highest collinearity with green foxtail, followed by maize. The SiWOX genes primarily harbor two categories of cis-acting regulatory elements: Stress response and plant hormone response. Notably, prominent hormones triggering responses include methyl jasmonate, abscisic acid, gibberellin, auxin, and salicylic acid. Analysis of SiWOX expression patterns and hormone responses unveiled potential functional diversity among different SiWOX genes in foxtail millet. These findings lay a solid foundation for further elucidating the functions and evolution of SiWOX genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Setaria (Planta) , Fatores de Transcrição , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Estresse Fisiológico/genética
11.
Hum Genet ; 143(3): 357-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483614

RESUMO

Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Heterozigoto , Insuficiência Ovariana Primária , Humanos , Insuficiência Ovariana Primária/genética , Feminino , Adulto , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Sequenciamento do Exoma , Dano ao DNA , Anemia de Fanconi/genética , Mutação de Sentido Incorreto
12.
Exp Ther Med ; 27(4): 147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476889

RESUMO

The mitochondrial calcium uniporter (MCU) is a major protein for the uptake of mitochondrial calcium to regulate intracellular energy metabolism, including processes such as mitophagy. The present study investigated the effect of the MCU on mitophagy in pancreatic ductal epithelial cells (PDECs) in acute pancreatitis (AP) in vitro. The normal human PDECs (HPDE6-C7) were treated with caerulein (CAE) to induce AP-like changes, with or without ruthenium red to inhibit the MCU. The mitochondrial membrane potentials (MMPs) and mitochondrial Ca2+ levels were analyzed by fluorescence. The expression levels of MCU, LC3, p62, and translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20), putative kinase 1 (PINK1), and Parkin were measured by western blotting and immunofluorescence. Mitophagy was observed by confocal fluorescence microscopy and transmission electron microscopy. The results showed that CAE increased the MCU protein expression, mitochondrial Ca2+ levels, MMP depolarization and the protein expression of mitophagy markers including the LC3II/I ratio, PINK1, and Parkin. CAE decreased the protein expression of p62 and TOMM20, and promoted the formation of mitophagosomes in HPDE6-C7 cells. Notably, changes in these markers were reversed by inhibiting the MCU. In conclusion, an activated MCU may promote mitophagy by regulating the PINK1/Parkin pathway in PDECs in AP.

13.
J Colloid Interface Sci ; 664: 848-856, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493650

RESUMO

In this work, we report a series of noble metal (Ag, Au, Pt, etc.) sulfides that act as co-catalysts anchoring on CdS nanorods (NRs) obtained via a cation exchange strategy to promote photocatalytic hydrogen evolution. CdS NRs are first generated via a hydrothermal routine, noble metal sulfides are then in-situ grown on CdS NRs by a cation exchange method. CdS/Ag2S, CdS/Au2S and CdS/PtS NRs show improved hydrogen production rates (2506.88, 1513.17 and 1004.54 µmol g-1h-1, respectively), approximately 18, 11 and 7 times higher than CdS NRs (138.27 µmol g-1h-1). Among CdS/noble metal sulfide NRs, CdS/Ag2S NRs present the best H2 production performance. The apparent quantum efficiency (AQE) of CdS/Ag2S NRs achieves 3.11 % at λ = 370 nm. The improved photocatalytic performance of CdS/noble metal sulfide NRs dues to the following points: i) Noble metal sulfides on CdS NRs are beneficial for elevating light-absorbing and light-utilizing capacities, contributing to generating more photoexcited charges; ii) Noble metal sulfides are in-situ grown on CdS NRs as electron acceptors by a cation exchange method, thus the photoexcited electrons generated by CdS NRs rapidly migrate to the surface of noble metal sulfides, successfully accelerating the carriers separation efficiency. This series of noble metal sulfides acting as co-catalysts anchoring on CdS NRs offer new insights into the construction principles of high-performance photocatalytic hydrogen evolution catalysts.

14.
Reprod Biomed Online ; 48(4): 103685, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324980

RESUMO

RESEARCH QUESTION: What role does programmed cell death 4 (PDCD4) play in premature ovarian insufficiency (POI)? DESIGN: A PDCD4 gene knockout (PDCD4-/-) mouse model was constructed, a POI mouse model was established similar to human POI with 4-vinylcyclohexene dioxide (VCD), a PDCD4-overexpressed adenovirus was designed and the regulatory role in POI in vitro and in vivo was investigated. RESULTS: PDCD4 expression was significantly increased in the ovarian granulosa cells of patients with POI (P ≤ 0.002 protein and mRNA) and mice with VCD-induced POI (P < 0.001 protein expression in both mouse ovaries and granulosa cells). In POI-induced mice model, PDCD4 knockouts significantly increased anti-Müllerian hormone, oestrodiol and numbers of developing follicles, and the PI3K-AKT-Bcl2/Bax signalling pathway is involved in it. CONCLUSION: The expression and regulation of PDCD4 significantly affects the POI pathology in a mouse model. This effect is closely related to the regulation of Bcl2/Bax and the activation of the PI3K-AKT signalling pathway.


Assuntos
Cicloexenos , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína X Associada a bcl-2/metabolismo , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases/metabolismo , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas de Ligação a RNA/genética
15.
J Hepatocell Carcinoma ; 11: 373-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410699

RESUMO

Background: Tumor metastasis is the leading cause of high mortality in hepatocellular carcinoma (HCC). The metastasis-related HCC microenvironment is characterized by high heterogeneity. Single-cell RNA sequencing (scRNA-seq) may aid in determining specific cell clusters involved in regulating the immune microenvironment of HCC. Methods: The scRNA-seq data of 10 HCC samples were collected from the Gene Expression Omnibus (GEO) database GSE124395. Correlations between key gene expression and clinicopathological data were determined using public databases. HCC tissues and matched tumor-adjacent and normal tissue samples were obtained by surgical resection at Sichuan Cancer Hospital. Immune cell infiltration analysis was performed and verified by immunohistochemistry and immunofluorescent staining. Results: Nine malignant hepatocyte clusters with different marker genes and biological functions were identified. C3_Hepatocyte-SERF2 and C6_Hepatocyte-IL13RA2 were mainly involved in the regulation of the immune microenvironment, which was also a significant pathway in regulating HCC metastasis. Key genes in malignant hepatocyte clusters that associated with HCC metastasis were further screened by LASSO regression analysis. TPI1, a key gene in C6_Hepatocyte-IL13RA2 and HCC metastasis, could participate in regulating the HCC immune microenvironment in The Cancer Genome Atlas (TCGA) and Tumor Immune Estimation Resource (TIMER) databases. Moreover, immunohistochemistry analysis demonstrated that TPI1 expression was positively correlated with HCC metastasis and poor prognosis, while negatively correlated with CD8+ T cell infiltration. The negative correlation between TPI1 expression and CD8+ T cell infiltration was further confirmed by immunofluorescence staining. Conclusion: In summary, a cluster of TPI1+ malignant hepatocytes was associated with the suppression of CD8+ T cell infiltration and HCC metastasis, providing novel insights into potential biomarkers for immunotherapy in HCC.

16.
J Colloid Interface Sci ; 662: 727-737, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377692

RESUMO

Improving the separation efficiency of photogenerated carriers plays an important role in photocatalysis. In this study, two-dimensional (2D)/2D zinc indium sulfide (ZnIn2S4)/bismuth titanate (Bi4Ti3O12) nanoplate heterojunctions were synthesized to alter the Bi4Ti3O12 morphology, modulate the bandgap of Bi4Ti3O12, and enhance the utilization of light. Meanwhile, the construction of the S-scheme heterojunction establishes an internal electric field at the ZnIn2S4/Bi4Ti3O12 heterojunctions interface and achieves the spatial separation of photogenerated charges. The hydrogen production rate of ZnIn2S4/Bi4Ti3O12 nanoplate with the optimal ratio reaches 27.50 mmol h-1 g-1, which is 1.5 times higher than that of ZnIn2S4/Bi4Ti3O12 nanoflower (18.28 mmol h-1 g-1) and 2.4 times higher than that of ZnIn2S4 (11.69 mmol h-1 g-1). The apparent quantum efficiency of ZnIn2S4/Bi4Ti3O12 nanoplate reached 57.9 % under a single wavelength of light at 370 nm. This work provides insights into the study of new materials for photocatalytic hydrogen production.

17.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255870

RESUMO

Biomass yield is one of the important traits of sorghum, which is greatly affected by leaf morphology. In this study, a lobed-leaf mutant (sblob) was screened and identified, and its F2 inbred segregating line was constructed. Subsequently, MutMap and whole-genome sequencing were employed to identify the candidate gene (sblob1), the locus of which is Sobic.003G010300. Pfam and homologous analysis indicated that sblob1 encodes a Cytochrome P450 protein and plays a crucial role in the plant serotonin/melatonin biosynthesis pathway. Structural and functional changes in the sblob1 protein were elucidated. Hormone measurements revealed that sblob1 regulates both leaf morphology and sorghum biomass through regulation of the melatonin metabolic pathway. These findings provide valuable insights for further research and the enhancement of breeding programs, emphasizing the potential to optimize biomass yield in sorghum cultivation.


Assuntos
Melatonina , Sorghum , Sorghum/genética , Biomassa , Melhoramento Vegetal , Grão Comestível
18.
Protein Cell ; 15(5): 364-384, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38126810

RESUMO

The ovary is indispensable for female reproduction, and its age-dependent functional decline is the primary cause of infertility. However, the molecular basis of ovarian aging in higher vertebrates remains poorly understood. Herein, we apply spatiotemporal transcriptomics to benchmark architecture organization as well as cellular and molecular determinants in young primate ovaries and compare these to aged primate ovaries. From a global view, somatic cells within the non-follicle region undergo more pronounced transcriptional fluctuation relative to those in the follicle region, likely constituting a hostile microenvironment that facilitates ovarian aging. Further, we uncovered that inflammation, the senescent-associated secretory phenotype, senescence, and fibrosis are the likely primary contributors to ovarian aging (PCOA). Of note, we identified spatial co-localization between a PCOA-featured spot and an unappreciated MT2 (Metallothionein 2) highly expressing spot (MT2high) characterized by high levels of inflammation, potentially serving as an aging hotspot in the primate ovary. Moreover, with advanced age, a subpopulation of MT2high accumulates, likely disseminating and amplifying the senescent signal outward. Our study establishes the first primate spatiotemporal transcriptomic atlas, advancing our understanding of mechanistic determinants underpinning primate ovarian aging and unraveling potential biomarkers and therapeutic targets for aging and age-associated human ovarian disorders.


Assuntos
Envelhecimento , Ovário , Transcriptoma , Feminino , Animais , Ovário/metabolismo , Envelhecimento/genética
19.
Cell Rep ; 42(12): 113531, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38060382

RESUMO

Oocyte maturation is vital to attain full competence required for fertilization and embryogenesis. NLRP14 is preferentially expressed in mammalian oocytes and early embryos. Yet, the role and molecular mechanism of NLRP14 in oocyte maturation and early embryogenesis are poorly understood, and whether NLRP14 deficiency accounts for human infertility is unknown. Here, we found that maternal loss of Nlrp14 resulted in sterility with oocyte maturation defects and early embryonic arrest (EEA). Nlrp14 ablation compromised oocyte competence due to impaired cytoplasmic and nuclear maturation. Importantly, we revealed that NLRP14 maintained cytoplasmic UHRF1 abundance by protecting it from proteasome-dependent degradation and anchoring it from nuclear translocation in the oocyte. Furthermore, we identified compound heterozygous NLRP14 variants in women affected by infertility with EEA, which interrupted the NLRP14-UHRF1 interaction and decreased UHRF1 levels. Our data demonstrate NLRP14 as a cytoplasm-specific regulator of UHRF1 during oocyte maturation, providing insights into genetic diagnosis for female infertility.


Assuntos
Infertilidade Feminina , Animais , Feminino , Humanos , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Oócitos/metabolismo , Oogênese , Citoplasma , Desenvolvimento Embrionário/genética , Mamíferos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Nucleosídeo-Trifosfatase/metabolismo
20.
BMC Pregnancy Childbirth ; 23(1): 855, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087253

RESUMO

BACKGROUND: Several studies on pregnancy complications of poor ovarian response (POR) patients did not draw a consistent conclusion. The POSEIDON criteria introduces the concept of "low prognosis" and divides POR patients into four groups based on age, AFC and AMH for individualized management. We analyzed low-prognosis population and patients with regular ovarian response, compared maternal and neonatal complications and discussed the relevant risk factors. METHODS: A retrospective cohort study was conducted of females who achieved a singleton clinical pregnancy after IVF / ICSI-fresh embryo transfer in a single center from January 2014 to March 2019. Participants with low prognosis, as defined by the POSEIDON criteria, were enrolled in the study groups. The controls were defined as AFC ≥ five and number of retrieved oocytes > nine. Maternal and neonatal complications were compared among those groups. RESULTS: There were 2554 cycles in POSEIDON group 1, 971 in POSEIDON group 2, 141 in POSEIDON group 3, 142 in POSEIDON group 4, and 3820 in Control. Univariate analysis roughly showed that Groups 2 and 4 had an increased tendency of pregnancy complications. Multi-variable generalized estimating equations (GEE) analysis showed that the risks of GDM, total pregnancy loss, and first-trimester pregnancy loss in Groups 2 and 4 were significantly higher than in Control. The risk of hypertensive disorders of pregnancy (HDP) in Groups 2 and 3 increased, and Group 4 had an increased tendency without statistical significance. After classification by age, GEE analysis showed no significant difference in risks of all complications among groups ≥ 35 years. In patients < 35 years, the risk of HDP in POSEIDON group 3 was significantly higher than in controls (< 35 years), and there was no significant increase in the risk of other complications. CONCLUSION: Compared to patients with regular ovarian response, low-prognosis population have increased tendency of maternal and neonatal complications. In low-prognosis patients, advanced age (≥ 35 years) might be the predominant risk factor for pregnancy complications. In those < 35 years, poor ovarian reserve could contribute to HDP.


Assuntos
Aborto Espontâneo , Fertilização in vitro , Gravidez , Recém-Nascido , Humanos , Feminino , Adulto , Fertilização in vitro/efeitos adversos , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Estudos Retrospectivos , Coeficiente de Natalidade , Indução da Ovulação , Transferência Embrionária/efeitos adversos , Prognóstico , Taxa de Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...