Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(15): e2304223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407490

RESUMO

Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.


Assuntos
Inflamação , Lisossomos , Lisossomos/metabolismo , Animais , Camundongos , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Fótons , Imagem Óptica/métodos , Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Humanos , Camundongos Endogâmicos C57BL
2.
Anal Chem ; 95(21): 8150-8155, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37155725

RESUMO

Accurate quantification on the quantum yields (φ) of both the prompt fluorescence (PF) and the delayed fluorescence (DF) species is quite essential for the clarification of molecular design rationales for thermally activated delayed fluorescence (TADF) luminogens. Currently, most φPF and φDF data of TADF fluorophores were acquired through time-correlated single-photon counting (TCSPC) lifetime measurement systems. However, because of their equal-time-channel working manner, so far all the commercially available TCSPC systems cannot render accurate measurement on φPF of TADF materials due to the lack of enough valid data points in the faster decay region of the corresponding photoluminescence (PL) decay curves. Although an intensified charge coupled device (ICCD) system equipped with a streak camera or an optical parametric oscillation laser has been proven to be a powerful tool for accurate determination of φPF and φDF of TADF fluorophores, the ultrahigh cost of these ICCD systems makes them inaccessible to most users. Herein, by replacing the timing module of a commercial TCSPC system with a low-cost and versatile time-to-digital converter (TDC) module, we developed a modified TCSPC system that can work in an unequal-time-channel manner. The resultant TDC-TCSPC system can not only concurrently determine the accurate lifetime of PF and DF species whose lifetime span even exceeds 5 orders of magnitude in just one time window but also render accurate measurements on φPF and φDF of TADF fluorophores. The reliability of the TDC-TCSPC method was verified through TCSPC- and ICCD-based comparative experiments on ACMPS, a known TADF fluorophore. Our results not only can provide a low-cost and convenient test method for accurate determination of key experimental data of TADF materials but also will facilitate deeper understanding of the molecular design principles for high-performance TADF materials.

3.
Chemistry ; 22(37): 13201-9, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27516405

RESUMO

The facile synthesis of Group 9 Rh(III) porphyrin-aza-BODIPY conjugates that are linked through an orthogonal Rh-C(aryl) bond is reported. The conjugates combine the advantages of the near-IR (NIR) absorption and intense fluorescence of aza-BODIPY dyes with the long-lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge-transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the Rh(III) conjugates exhibit strong aza-BODIPY-centered fluorescence at around 720 nm (ΦF =17-34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet-oxygen quantum yield (ΦΔ =19-27 %, λex =690 nm) have been observed. Nanosecond pulsed time-resolved absorption spectroscopy confirms that relatively long-lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA