Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 30320-30331, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312235

RESUMO

[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.

2.
Opt Lett ; 46(4): 849-852, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577527

RESUMO

All-dielectric metamaterials are a promising low-loss alternative to plasmonic metamaterials for near-infrared perfect reflection, but the working bandwidth is still limited. Here we propose an ultra-wideband all-dielectric metamaterial perfect reflector that has a compact structure consisting of the subwavelength high-index grating, connection layer, and multilayer stack. Such a perfect reflector combines the advantages of quarter-wave design and resonant leaky mode, and covers an extremely wide wavelength range from 966 to 2203 nm under the normal incidence of transverse magnetic wave. By engineering the connection layer, the reflection band can be split with an ultra-narrowband tunneling of light transmission. These achievements demonstrate the promising potential of all-dielectric metamaterials as ultra-wideband reflectors for extensive applications in optical devices and systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...