RESUMO
At present, a clear dependency of the dynamics upon temperature and pH has not been established for many heavy metals (HMs), so making it difficult to project and quantify the impact of ocean warming and acidification on metal biogeochemistry in future scenarios. To understand the responses of HMs to future ocean warming and acidification, we estimated the spatial-temporal variations and pollution status of six dissolved HMs (i.e., Cu, Zn, Pb, Cd, Hg, and As) in surface seawater throughout the Bohai Sea during 2012-2014. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Hg, and As in seawater of the Bohai Sea were between 2.01-3.18, 10.47-15.58, 0.85-2.31, 0.25-0.55, 0.05-0.13, and 1.24-1.98 µg L-1, respectively. Spatially, the average concentrations of the studied HMs generally decreased from the three bays towards the central area, except for Hg which was relatively high in the central Bohai Sea in some cases. This implied that, in addition to continental inputs, there may be other processes affecting the distribution pattern of Hg, such as cyclonic or anticyclonic gyres, benthic fluxes between surface and bottom layers, and some marine planktonic and microbial activities. The pollution assessments of six HMs in seawater revealed that the major risk pollutants were Pb and Hg across the Bohai Sea. Analyses of the local and interactive effects of temperature and pH on HMs showed that the interactive effect of changing temperature and pH on HMs is much more complex than a direct temperature/pH relationship with HMs. Altogether, the results suggested that future ocean warming and acidification will significantly influence the concentrations of dissolved HMs in seawater of the Bohai Sea, but with different relationships.
RESUMO
This study investigated the effect of hydraulic retention time (HRT) on the denitrification performance and microbial composition of reactors, packed with composite polycaprolactone and corncob carbon sources, during the treatment mariculture wastewater. The optimal HRT was 3 h, and average nitrogen removal efficiency was 99.00 %, 99.07 %, and 98.98 % in the HRT =3, 5, and 7 h groups, respectively. However, the 3 h group (DOC 2.91 mg/L) was the only group with a lower DOC concentration than that of the influent group (3.31 mg/L). Moreover, species richness was lower at HRT =3 h, with a greater proportion of denitrification-dominant phyla, such as Proteobacteria. The abundance of the NarG, NirK, and NirS functional genes suggested that the HRT =3 h group had a significant advantage in the nitrate and nitrite reduction phases. Under a short HRT, the composite carbon source achieved a good denitrification effect.
Assuntos
Reatores Biológicos , Desnitrificação , Poliésteres , Poliésteres/metabolismo , Zea mays , Microbiota , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , NitratosRESUMO
Assessment of ecological security is essential for understanding the status of bay ecosystem and developing appropriate management strategy. Based on the driving force-pressure-state-impact-response (DPSIR) model, the demographic, economic, social, and ecological data of Laizhou Bay and its three neighboring counties were selected for the period from 2015 to 2021. An ecological security evaluation index system of Laizhou Bay containing 26 indicators was established, and the weights of each indicator were determined by the methods of AHP and EWM, and a comprehensive evaluation of the ecological security of Laizhou Bay was carried out by ESI. Correlations between indicators were analyzed by the Spearman's rank coefficient of correlation. The results showed that there were significant correlations between marine conditions and indicators such as population size in the surrounding area, mariculture area, industrial and domestic wastewater discharge, and treatment rate. Overall, from 2015 to 2021, the ecological security of Laizhou Bay showed a favorable trend, from a relatively unsafe level to a generally safe level, and then to a relatively safe level. Through the comprehensive evaluation of the ecological security of Laizhou Bay, we can recognize the utilization of marine resources and ecological carrying capacity, guide the rational development and utilization of marine resources, and promote the sustainable development of the marine economy.
Assuntos
Baías , Ecossistema , Monitoramento Ambiental , China , Monitoramento Ambiental/métodos , Ecologia , Conservação dos Recursos NaturaisRESUMO
Microplastics pose a threat to marine environments through their physical presence and as vectors of chemical pollutants. However, the impact of microplastics on the accumulation and human health risk of chemical pollutants in marine organisms remains largely unknown. In this study, we investigated the microplastics and polycyclic aromatic hydrocarbons (PAHs) pollution in marine organisms from Sanggou Bay and analyzed their correlations. Results showed that microplastic and PAHs concentration ranged from 1.23 ± 0.23 to 5.77 ± 1.10 items/g, from 6.98 ± 0.45 to 15.07 ± 1.25 µg/kg, respectively. The microplastic abundance, particularly of fibers, transparent and color plastic debris, correlates strongly with PAH contents, indicating that microplastics increase the bioaccumulation of PAHs and microplastics with these characteristics have a significant vector effect on PAHs. Although consuming seafood from Sanggou Bay induce no carcinogenic risk from PAHs, the presence of microplastics in organisms can significantly increases incremental lifetime cancer risk of PAHs. Thus, microplastics can serve as transport vectors for PAHs with implications for the potential health risks to human through consumption. This study provides new insight into the risks of microplastics in marine environments.
Assuntos
Organismos Aquáticos , Baías , Microplásticos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Microplásticos/toxicidade , China , Humanos , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo , Bioacumulação , Medição de Risco , Monitoramento AmbientalRESUMO
Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.
Assuntos
Mudança Climática , Diatomáceas , Dinoflagellida , Eutrofização , Temperatura , Fitoplâncton , Nutrientes/análise , Monitoramento Ambiental , China , Proliferação Nociva de Algas , Ecossistema , Estações do AnoRESUMO
Diatoms and dinoflagellates are two typical functional groups of phytoplankton assemblages, which play a crucial role in the structure and functioning of most marine ecosystems. To date, a novel challenge in ecology and biogeochemistry is to address the influences of environmental changes associated with climate change and human activities on the dynamics of diatoms and dinoflagellates. However, the knowledge of the key environmental factors controlling the diatom-dinoflagellate dynamics remains to be improved, particularly in the coastal ecosystems. Therefore, we conducted four cruises along the Qingdao coastline in spring, summer, autumn, and winter 2022 to explore how diatoms and dinoflagellates varied in response to regional environmental changes. The results showed that the phytoplankton communities were dominated by diatoms and dinoflagellates in terms of abundance and species diversity throughout the year in the study region. Yet, there were significant seasonal variability of diatoms and dinoflagellates across the four seasons. For example, diatom species was the most diverse during autumn, and the higher average abundance was observed in the fall and winter. In contrast, the average abundance of dinoflagellates was maximum during the summer and minimum in the autumn season. Moreover, the abundance and species ratios of diatoms/dinoflagellates (dia/dino) also showed significant seasonal variations in the region. The dia/dino abundance ratio was lowest in summer, while the dia/dino species ratio showed an increasing trend from spring to fall and a slight descending trend during winter. Based on the redundancy analysis, we revealed that diatoms and dinoflagellates responded differently to various environmental variables in different seasons, of which temperature and nutrients (especially dissolved inorganic nitrogen, DIN) had highly significant correlations with both the dia/dino abundance and species ratios. Thus, we suggested that temperature and DIN were the key factors controlling the seasonal dynamics of diatoms and dinoflagellates in the Qingdao coastal area.
Assuntos
Mudança Climática , Diatomáceas , Dinoflagellida , Estações do Ano , Dinoflagellida/fisiologia , Diatomáceas/fisiologia , China , Fitoplâncton/fisiologia , Monitoramento Ambiental , Ecossistema , BiodiversidadeRESUMO
Concerns have been raised regarding the adverse effects of nanoparticles (NPs) on marine organisms, as an increasing number of NPs inevitably enter the marine environment with the development of nanotechnology. Owing to the photocatalytic properties, TiO2 NPs' toxicity may be aggravated by enhanced UV-B resulting from stratospheric ozone depletion. However, the molecular mechanisms of phytoplankton in response to TiO2 NPs under UV-B remains poorly understood. In this study, we integrated whole transcriptome analysis with physiological data to provide understanding on the toxic and protective mechanisms of marine Chlorella pyrenoidosa in response to TiO2 NPs under UV-B. The results indicated that the changes in gene expression could be related to the growth inhibition and TiO2 NP internalization in C. pyrenoidosa, and several molecular mechanisms were identified as toxicity response to TiO2 NPs and UV-B. Differential expression of genes involved in glycerophospholipids metabolism indicated that cell membrane disruption allowed TiO2 NPs to enter the algal cell under UV-B exposure, although the up-regulation of genes involved in the general secretory dependent pathway and the ATP-binding cassette transporter family drove cellular secretion of extracellular polymeric substances, acting as a barrier that prevent TiO2 NP internalization. The absence of changes in gene expression related to the antioxidant system may be responsible for the severe oxidative stress observed in algal cells following exposure to TiO2 NPs under UV-B irradiation. Moreover, differential expression of genes involved in pathways such as photosynthesis and energy metabolism were up-regulated, including the light-harvesting, photosynthetic electron transport coupled to photophosphorylation, carbon fixation, glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, indicating that more energy and metabolites were supplied to cope with the toxicity of TiO2 NPs and UV-B. The obtained results provide valuable information on the molecular mechanisms of response of marine phytoplankton exposed to TiO2 NPs and UV-B.
Assuntos
Chlorella , Microalgas , Nanopartículas , Raios Ultravioleta , Nanopartículas/toxicidade , Fitoplâncton/metabolismo , Perfilação da Expressão Gênica , Titânio/metabolismoRESUMO
Trimethylamine N-oxide (TMAO) is widely present in marine animals. However, the characteristics of TMAO content in different classes of marine animals are insufficiently understood. In this study, the TMAO content in 79 marine animals (48 species, 7 classes) collected in the coastal and offshore areas of China during year 2019-2022 was analysed. The results showed that the TMAO content of the total samples varied from 0 to 139.19 mmol kg-1. The TMAO content in the classes Bivalvia, Gastropoda, Polychaeta and Holothuroidea varied from 0.06 ± 0.09 to 0.38 ± 0.63 mmol kg-1, but it varied from 30.20 ± 24.20 to 75.90 ± 38.59 mmol kg-1 in the classes Crustacea, Cephalopoda, and Osteichthyes. The TMAO content in the latter 3 classes was 2-3 orders of magnitude higher than that of the former 4 classes. It was inferred that the significant difference was related to the food sources or physiological metabolic mechanisms of different classes.
Assuntos
Peixes , Metilaminas , Animais , Metilaminas/análise , Metilaminas/metabolismo , Peixes/metabolismo , ChinaRESUMO
The relationships between phytoplankton carbon (C) biomass and diversity (i.e., C-to-H' ratio) and chlorophyll a (i.e., C-to-Chl a ratio) are good indicators of marine ecosystem functioning and stability. Here we conducted four cruises spanning 2 years in Jiaozhou Bay to explore the dynamics of C-to-H' and C-to-Chl a ratios. The results showed that the phytoplankton C biomass and diversity were dominated by diatoms, followed by dinoflagellates. The average C-to-H' ratio ranged from 84.10 to 912.17, with high values occurring in the northern region of the bay. In contrast, the average C-to-Chl a ratio ranged between 15.55 and 89.47, and high values primarily appeared in the northern or northeastern part of the bay. In addition, the redundancy analysis showed that temperature and phosphate (DIP) were significantly correlated with both ratios in most cases, indicating that temperature and DIP may be key factors affecting the dynamics of C-to-H' and C-to-Chl a ratios.
Assuntos
Clorofila , Fitoplâncton , Clorofila/análise , Clorofila A , Ecossistema , Baías , Carbono , China , Monitoramento Ambiental/métodosRESUMO
Dissolved organic matter (DOM) is ubiquitous and widespread in natural water and influences the transformation and removal of antibiotics. Nevertheless, the influence of DOM molecular weight (MW) on the indirect photodegradation of antibiotics has rarely been reported. This study attempted to explore the influence of the molecular weight of DOM on the indirect photodegradation of two fluoroquinolone antibiotics (FQs), ofloxacin (OFL) and norfloxacin (NOR), by using UV-vis absorption and fluorescence spectroscopy. The results showed that indirect photodegradation was considered the main photodegradation pathway of FQs in DOM fractions. Triplet-state excited organic matter (3DOM*) and singlet oxygen (1O2) were the main reactive intermediates (RIs) that affected the indirect photodegradation of FQs. The indirect photodegradation rate of FQs was significantly promoted in DOM fractions, especially in the low molecular weight DOM fractions (L-MW DOM, MW < 10 kDa). The results of excitation-emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) showed that terrestrial humic-like substances had a higher humification degree and fluorophore content in L- MW DOM fractions, which could produce more 3DOM* and 1O2 to promote the indirect photodegradation of FQs. This study provided new insight into the effects of DOM at the molecular weight level on the indirect photodegradation of antibiotics in natural water.
Assuntos
Matéria Orgânica Dissolvida , Água , Fotólise , Peso Molecular , Fluoroquinolonas , Antibacterianos/análise , Substâncias Húmicas/análise , Espectrometria de FluorescênciaRESUMO
More than 1,154 fishing ports are widely distributed in China's coastal areas. To date, however, few studies on the pollution and ecological risks of heavy metals in these fishing ports have been reported. In this study, the heavy metals of 148 sediment samples collected from 37 fishing ports along the coasts of the Yellow Sea and Bohai Sea were detected. The results showed that the average contents of Cu, Pb, Zn, and Cd were 53.58 ± 44.53, 27.90 ± 18.10, 143.52 ± 74.72 and 0.28 ± 0.15 mg/kg, respectively. Based on the geoaccumulation index (Igeo) and the potential ecological risk index (RI), we found that fishing ports were the most severely polluted by Cu, but Cd had the highest ecological risk, and most of fishing ports were in moderate potential ecological risk. The positive correlation between heavy metals and total organic carbon indicated that heavy metals in fishing ports were mainly affected by anthropogenic activities.
Assuntos
Cádmio , Metais Pesados , Caça , Efeitos Antropogênicos , Medição de RiscoRESUMO
It is difficult to show microbial growth kinetics online when they grow in complex matrices. We presented a novel strategy to address this challenge by developing a high-performance microbial growth analyzer (HPMGA), which employed a unique 32-channel capacitively coupled contactless conductivity detector as a sensing element and fixed with a CellStatz software. It was capable of online showing accurate and repeatable growth curves of well-dispersed and bad-dispersed microbes, whether they grew in homogeneous simple culture broth or heterogeneous complex matrices. Moreover, it could automatically report key growth kinetics parameters. In comparison to optical density (OD), plate counting and broth microdilution (BMD) methods, we demonstrated its practicability in five scenarios: 1) the illustration of the growth, growth rate, and acceleration curves of Escherichia coli (E. coli); 2) the antimicrobial susceptibility testing (AST) of Oxacillin against Staphylococcus aureus (S. aureus); 3) the determination of Ag nanoparticle toxicity on Providencia rettgeri (P. rettgeri); 4) the characterization of milk fermentation; and 5) the enumeration of viable pathogenic Vibrio in shrimp body. Results highlighted that the HPMGA method had the advantages of universality and effectivity. This technology would significantly facilitate the routine analysis of microbial growth in many fields (biology, medicine, clinic, life, food, environment, and ecology), paving an avenue for microbiologists to achieve research goals that have been inhibited for years due to a lack of practical analytical methods.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Escherichia coli , Cinética , Prata , Staphylococcus aureus , LeiteRESUMO
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the marine environments due to the wide use and mismanagement of plastics. However, the effect of MPs/NPs on the nutrition quality of economic species is poorly understood, and their underlying mechanisms remained unclear. We therefore investigated the impacts of polystyrene MPs/NPs on the nutrition composition of marine jacopever Sebastes schlegelii from the perspective of assimilation and metabolism. Results showed that NPs reduced more nutrition quality than MPs. Despite no notable impact on intestinal microbiota function, MPs/NPs influenced the assimilation of fish through intestinal damage. Furthermore, NPs induced greater damage to hepatocyte metabolism than MPs, caused by hepatocyte uptake through membrane protein pumps/channels and clathrin/caveolin-mediated endocytosis for NPs, while through phagocytosis/pinocytosis for MPs. NPs triggered more cell apoptosis signals in Ferroptosis and FoxO signaling pathways than MPs, destroying mitochondria structure. Compared with MP treatments, a significant upregulation of genes (PRODH and SLC25A25A) associated with the electron transfer chain of mitochondria was detected in the NP treatments, influencing the tricarboxylic acid cycle and interfering with liver metabolism of proteins, fatty acid, glycerol phospholipids, and carbohydrates. This work provides new insights into the potential impacts of MPs/NPs on the quality and safety of seafood.
RESUMO
The total dimethylsulfoniopropionate (DMSPt) concentrations over the surface seawater of China's marginal seas and the northwest Pacific Ocean (NWPO) in May-July 2021 (during the recessional period of La Niña) were analysed. The results showed that the DMSPt concentrations in the marginal seas of China varied from 4.73 to 775.96 nmol L-1, with an average value of 111.42 ± 129.30 nmol L-1 (average ± standard deviation). It was 2-12 times higher than those previously measured in the same seas and in the NWPO in this study. Significant positive correlations between DMSPt, chlorophyll-a and surface seawater temperature (SST) were observed in the SYS, the ECS and the NWPO. Moreover, their abnormally high SST was related to La Niña. These results suggested that high phytoplankton abundance was caused by abnormally high SST following La Niña, which further promoted DMSPt concentration increases. However, the increase of DMSPt was also related to other factors such as nutrients.
Assuntos
El Niño Oscilação Sul , Água do Mar , Oceano Pacífico , Oceanos e Mares , Água do Mar/análise , ChinaRESUMO
To identify the key factors influencing the trimethylamine N-oxide (TMAO) content of teleost fishes living in shallow seas and the epipelagic zone of the deep ocean, the muscle TMAO content was measured in 152 teleost fishes (21 species) collected from the marginal seas of China and the epipelagic zone of the northwest Pacific Ocean (NWPO) during May-July 2021. The results showed that the TMAO content in all fishes varied from 4.99 to 82.97 mmol kg-1, and it varied notably among different species, e.g., the highest average content (72.71 ± 8.22 mmol kg-1 in Argyrosomus argentatus) was 1 order of magnitude higher than the lowest one (Scomber japonicus), but the ratios of the highest content to the lowest content in each species varied from 1.29 to 3.28, suggesting that the interspecific variations in TMAO content were obviously greater than the intraspecific variations. Moreover, no correlation was observed between the TMAO content of the 152 fishes and the corresponding environmental factors of seawater depth, salinity and temperature, indicating that species played a more important role than environmental factors in driving TMAO accumulation. To exclude the influence of species, intraspecies correlations between TMAO content and environmental factors were analyzed. In the marginal seas of China, only â¼8 % of the TMAO content of teleost fishes (1 species) showed a positive correlation with salinity and depth, but â¼50 % of the TMAO content (5 species) was negatively correlated with temperature. Moreover, the TMAO content of the fish increased by 4.66 ± 1.38 % compared with their corresponding intraspecific average values for every 1 °C of temperature decrease. A similar phenomenon was also found in the TMAO content of pelagic teleost fishes in the NWPO, suggesting that temperature was a key environmental factor affecting the TMAO content of teleost fishes in shallow seas and the epipelagic zone of the deep ocean.
Assuntos
Peixes , Músculo Esquelético , Animais , Oceano Pacífico , Oceanos e Mares , ChinaRESUMO
Diatoms have long been thought to dominate the marine silicon (Si) cycle, as well as play an important role in the ocean's carbon (C) export, due to density-driven particle sedimentation. Research in the past decade has shed new light on the potential importance of picocyanobacteria to C export, although the sinking mechanism is still unclear. Interestingly, the recent discovery of Si accumulation by picocyanobacteria of the genus Synechococcus has strong implications for the marine Si cycle, which may also have profound influence on the oceanic C export. Understanding the mechanisms of Synechococcus Si accumulation and its ecological effects are therefore critical for addressing wider issues such as Si and C exports by small cells via biological pump. Here, we show that recent advances in process studies indicate that the presence of Si within picocyanobacteria may be a common and universal feature. Subsequently, we generalize four biochemical forms of Si potentially present in picocyanobacterial cells, which are all different from diatomaceous opal-A, and hypothesize that these various structures of Si phases may be several stage products of Si precipitation. At the same time, several aspects of Si dynamics in Synechococcus are also discussed emphatically. In addition, we provide a first estimate of picocyanobacteria Si stock and production for the global ocean, accounting for 12% of the global Si inventory and 45% of the global annual Si production in the surface ocean, respectively. The implication is that picocyanobacteria may exert a significant influence on the marine Si cycle, which is likely to alter our understanding of the long-term control of the oceanic Si cycling by diatoms. Finally, we summarize three possible mechanisms and pathways through which picocyanobacteria-derived Si can be transported to the deep ocean. Altogether, marine picocyanobacteria, despite very small in cell size, are a non-negligible group for the export of biomineral Si to deeper waters and ocean sediments.
Assuntos
Diatomáceas , Synechococcus , Água do Mar/química , Água do Mar/microbiologia , Dióxido de Silício , Oceanos e MaresRESUMO
Zooplankton play key top-down and bottom-up regulatory roles in aquatic food webs, and are also ecologically indicative in marine ecosystems. However, there are relatively limited data on the effects of environmental changes on natural zooplankton communities, especially in coastal ecosystems. In the present study, we systematically evaluated the potential effects of various environmental variables, such as temperature, salinity, and nutrients, on the zooplankton communities along the coastal Yellow Sea during spring, summer, and fall. The results showed that the average abundance of zooplankton decreased in general from spring to autumn, but the biomass exhibited a different seasonal variation trend, with the highest in summer and the lowest in fall. Throughout the three seasons, copepods were the most dominant species within the zooplankton communities, followed by Pelagic larvae and Hydromedusae. However, Noctiluca miliaris accounted for a large proportion of zooplankton abundance during spring. Moreover, the correlation analysis was applied to explore the potential effects of environmental factors on the seasonal variation of zooplankton communities. The results showed that chlorophyll a (Chl a) and salinity were significantly correlated with zooplankton abundance and biomass during spring. The implication is that high phytoplankton biomass (expressed as Chl a) and salinity would benefit the growth of zooplankton in spring. During summer and fall, the effects of dissolved inorganic phosphate (DIP) on the zooplankton abundance and biomass showed a significant positive correlation, indicating that zooplankton were better able to tolerate high DIP during summer and fall. Taken together, Chl a, salinity, and DIP may be the key determinants controlling the seasonal dynamics of zooplankton communities in the coastal Yellow Sea.
Assuntos
Ecossistema , Zooplâncton , Animais , Estações do Ano , Clorofila A , Fitoplâncton , Biomassa , FosfatosRESUMO
Sulfamerazine (SM) is a commonly used antibiotic and have been widely used to control various bacterial infectious diseases. The structural composition of colored dissolved organic matter (CDOM) is known to be a major factor that influences the indirect photodegradation of SM, yet the influence mechanism remains unknown. In order to understand this mechanism, CDOM from different sources was fractionated using ultrafiltration and XAD resin, and characterized using UV-vis absorption and fluorescence spectroscopy. The indirect photodegradation of SM in these CDOM fractions was then investigated. Humic acid (JKHA) and Suwannee River natural organic matter (SRNOM) were used in this study. The results showed that CDOM could be divided into four components (three humic-like components and one protein-like component), and terrestrial humic-like components C1 and C2 were found to be the main components that promote SM indirect photodegradation due to their high aromaticity. The indirect photodegradation of SM was much faster in low molecular weight (MW) solutions, whose structures were dominated by greater aromaticity and terrestrial fluorophores in JKHA and higher terrestrial fluorophores in SRNOM. The HIA and HIB fractions of SRNOM contained large aromaticity and high fluorescence intensities of C1 and C2, resulting in a greater indirect photodegradation rate of SM. The HOA and HIB fractions of JKHA had abundant terrestrial humic-like components and contributed more to SM indirect photodegradation.
Assuntos
Matéria Orgânica Dissolvida , Sulfamerazina , Compostos Orgânicos/química , Fotólise , Antibacterianos , Rios/química , Espectrometria de Fluorescência , ChinaRESUMO
Concerns are raised towards individual effects of ocean acidification (OA) and engineered nanoparticles (NPs) on marine organisms. However, there are scarce studies regarding nanotoxicity under OA conditions. We investigated the combined effects of OA (pHs, 7.70 and 7.40) and CuO NPs on the embryotoxicity of marine medaka Oryzias melastigma and the bioavailability of CuO NPs in embryos. The results showed that OA alleviated the aggregation of CuO NPs and promoted the dissolution of CuO NPs in seawater (increased by 0.010 and 0.029 mg/L under pHs 7.70 and 7.40, respectively). Synergistic effects of OA with CuO NPs on medaka embryos were observed as indicated by much higher mortality and oxidative damage. Importantly, the enhanced toxicity of CuO NPs to medaka embryos under OA conditions mainly originated from the higher bioavailability of particulate CuO (e.g., 30.28 mg/kg at pH 7.40) rather than their released Cu2+ ions (e.g. 3.04 mg/kg at pH 7.40). The weaker aggregation of NPs under OA conditions resulted in higher penetration of individual particles (or small aggregates) into embryos through the micropyle and chorionic pores, causing enhanced bioavailability of NPs. The obtained results provided underlying insights into understanding the risk of NPs to marine ecosystem under OA conditions.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Oryzias , Poluentes Químicos da Água , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Ecossistema , Acidificação dos Oceanos , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Cobre/toxicidade , Nanopartículas Metálicas/toxicidadeRESUMO
Assessing the antimicrobial activity of engineered nanomaterials (ENMs), especially in realistic scenarios, is of great significance for both basic research and applications. Multiple analytical methods are available for analysis via off-line or on-line measurements. Real-world samples are often complex with inorganic and organic components, which complicates the measurements of microbial viability and/or metabolic activity. This article highlights the recent advances achieved in analytical methods including typical applications and specifics regarding their accuracy, cost, efficiency, and user-friendliness. Methodological drawbacks, technique gaps, and future perspectives are also discussed. This review aims to help researchers select suitable methods for gaining insight into antimicrobial activities of targeted ENMs in artificial and natural complex matrices.