RESUMO
Structural variations have emerged as an important driving force for genome evolution and phenotypic variation in various organisms, yet their contributions to genetic diversity and adaptation in domesticated animals remain largely unknown. Here we constructed a pangenome based on 250 sequenced individuals from 32 pig breeds in Eurasia and systematically characterized coding sequence presence/absence variations (PAVs) within pigs. We identified 308.3-Mb nonreference sequences and 3438 novel genes absent from the current reference genome. Gene PAV analysis showed that 16.8% of the genes in the pangene catalog undergo PAV. A number of newly identified dispensable genes showed close associations with adaptation. For instance, several novel swine leukocyte antigen (SLA) genes discovered in nonreference sequences potentially participate in immune responses to productive and respiratory syndrome virus (PRRSV) infection. We delineated previously unidentified features of the pig mobilome that contained 490,480 transposable element insertion polymorphisms (TIPs) resulting from recent mobilization of 970 TE families, and investigated their population dynamics along with influences on population differentiation and gene expression. In addition, several candidate adaptive TE insertions were detected to be co-opted into genes responsible for responses to hypoxia, skeletal development, regulation of heart contraction, and neuronal cell development, likely contributing to local adaptation of Tibetan wild boars. These findings enhance our understanding on hidden layers of the genetic diversity in pigs and provide novel insights into the role of SVs in the evolutionary adaptation of mammals.
Assuntos
Cruzamento , Genoma , Humanos , Animais , Suínos , Variação Genética , MamíferosRESUMO
Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding.