Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 713: 136516, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31951839

RESUMO

Satellite-derived aerosol optical depth (AOD) products are one of main predictors to estimate ground-level particulate matter (PM10 and PM2.5) concentrations. Since AOD products, however, are only provided under high-quality conditions, missing values usually exist in areas such as clouds, cloud shadows, and bright surfaces. In this study, spatially continuous AOD and subsequent PM10 and PM2.5 concentrations were estimated over East Asia using satellite- and model-based data and auxiliary data in a Random Forest (RF) approach. Data collected from the Geostationary Ocean Color Imager (GOCI; 8 times per day) in 2016 were used to develop AOD and PM models. Three schemes (i.e. G1, A1, and A2) were proposed for AOD modeling according to target AOD data (GOCI AOD and AERONET AOD) and the existence of satellite-derived AOD. The A2 scheme showed the best performance (validation R2 of 0.74 and prediction R2 of 0.73 when GOCI AOD did not exist) and the resultant AOD was used to estimate spatially continuous PM concentrations. The PM models with location information produced successful estimation results with R2 of 0.88 and 0.90, and rRMSE of 26.9 and 27.2% for PM10 and PM2.5, respectively. The spatial distribution maps of PM well captured the seasonal and spatial characteristics of PM reported in the literature, which implies the proposed approaches can be adopted for an operational estimation of spatially continuous AOD and PMs under all sky conditions.

2.
J Environ Manage ; 92(4): 1074-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21190788

RESUMO

In addition to posing a serious risk to motorist safety, vehicle collisions with wildlife are a significant threat for many species. Previous spatial modeling has concluded that wildlife-vehicle collisions (WVCs) exhibit clustering on roads, which is attributed to specific landscape and road-related factors. We reviewed twenty-four published manuscripts that used generalized linear models to statistically determine the influence that numerous explanatory predictors have on the location of WVCs. Our motivation was to summarize empirical WVC findings to facilitate application of this knowledge to planning, and design of mitigation strategies on roads. In addition, commonalities between studies were discussed and recommendations for future model design were made. We summarized the type and measurement of each significant predictor and whether they potentially increased or decreased the occurrence of collisions with ungulates, carnivores, small-medium vertebrates, birds, and amphibians and reptiles. WVCs commonly occurred when roads bisect favorable cover, foraging, or breeding habitat for specific species or groups of species. WVCs were generally highest on road sections with high traffic volumes, or low motorist visibility, and when roads cut through drainage movement corridors, or level terrain. Ungulates, birds, small-medium vertebrates, and carnivore collision locations were associated with road-side vegetation and other features such as salt pools. In several cases, results were spurious due to confounding and interacting predictors within the same model. For example, WVCs were less likely to occur when a road bisected steep slopes; however, steep slopes may be located along specific road-types and habitat that also influence the occurrence of WVCs. In conclusion, this review showed that much of the current literature has gleaned the obvious, broad-scale relationships between WVCs and predictors from available data sets, and localized studies can provide unique and novel results. Future research requires specific modeling for each target species on a road-by-road basis, and measuring the predictive power of model results within similar landscapes. In addition, research that builds on the current literature by investigating rare anomalies and interacting variables will assist in providing sound comprehensive guidelines for wildlife mitigation planning on roads.


Assuntos
Acidentes de Trânsito , Animais Selvagens , Ecossistema , Planejamento Ambiental , Veículos Automotores , Animais , Humanos , Análise de Regressão , Características de Residência , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...