Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 410: 131292, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153701

RESUMO

Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Adsorção , Poluentes do Solo/química , Compostagem/métodos , Solo/química , Biodegradação Ambiental , Recuperação e Remediação Ambiental/métodos
2.
Bioresour Technol ; 387: 129575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517706

RESUMO

Hyperthermophilic composting (HC) has been widely recognized for the advantage of high treatment efficiency for organic wastes. However, the humification process is still unclear. In this study, the humification process of HC was investigated, compared to conventional composting (CK). The results showed that the highest composting temperature, organic matter degradation rate, and humification index in HC were 92.62 °C, 23.98%, and 1.59, while those in CK were 70.23 °C, 14.49 %, and 1.04, indicating HC accelerated humification process. Moreover, the results of metagenomic and untargeted metabolomic showed that the genes and metabolisms related to carbohydrate, lipid, amino acid, fatty acid, and nucleotide were more abundant in HC. Consequently, the metabolic pathways regarding organic matter degradation and microbial reproduction were enhanced in the high temperature stage of HC, further accelerating the humification reaction in the low temperature stage. This work contributes to the comprehension of the humification mechanism in HC.


Assuntos
Compostagem , Substâncias Húmicas/análise , Solo , Esgotos , Aminoácidos , Esterco
3.
Cell Death Dis ; 11(1): 31, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949131

RESUMO

Transketolase (TKT), which is a metabolic enzyme in the nonoxidative phase of the pentose phosphate pathway (PPP), plays an important role in providing cancer cells with raw materials for macromolecular biosynthesis. The ectopic expression of TKT in hepatocellular carcinoma (HCC) was reported previously. However, the role of TKT in the initiation of liver cancer is still obscure. In our previous study, we found that TKT deficiency protects the liver from DNA damage by increasing levels of ribose 5-phosphate and nucleotides. What's more interesting is that we found TKT deficiency reduced bile acids and loss of TKT promoted the farnesoid receptor (FXR) expression. We further showed that TKT translocated into the nucleus of HCC cell lines through interacting with the signal transducer and activator of transcription 1 (STAT1), and then the complex inhibited FXR expression by promoting the binding of histone deacetylase 3 (HDAC3) to FXR promoter.


Assuntos
Carcinoma Hepatocelular/genética , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Transcetolase/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT1/metabolismo , Transcetolase/deficiência
4.
Mol Cancer ; 18(1): 138, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526370

RESUMO

Cancer has become a major health issue worldwide, contributing to a high mortality rate. Tumor metastasis is attributed to the death of most patients. Epithelial-to-mesenchymal transition (EMT) plays a vital role in inducing metastasis. During EMT, epithelial cells lose their characteristics, such as cell-to-cell adhesion and cell polarity, and cells gain motility, migratory potential, and invasive properties to become mesenchymal stem cells. Circular RNAs (circRNAs) are closely associated with tumor metastasis and patient prognosis, as revealed by increasing lines of evidence. CircRNA is a type of single-stranded RNA that forms a covalently closed continuous loop. CircRNAs are insensitive to ribonucleases and are widespread in body fluids. This work is the first review on EMT-related circRNAs. In this review, we briefly discuss the characteristics and functions of circRNAs. The correlation of circRNAs with EMT has been reported, and we discuss the ways circRNAs can regulate EMT progression through EMT transcription factors, EMT-related signaling pathways, and other mechanisms. This work summarizes current studies on EMT-related circRNAs in various cancers and provides a theoretical basis for the use of EMT-related circRNAs in targeted management and therapy.


Assuntos
Transformação Celular Neoplásica/genética , Transição Epitelial-Mesenquimal/genética , Predisposição Genética para Doença , RNA Circular , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Transcrição Gênica
5.
Int J Biol Sci ; 14(14): 2003-2011, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30585264

RESUMO

Long noncoding RNAs (lncRNAs), with length of more than 200 nucleotides, are not translated into proteins but involved in multiple diverse diseases, especially tumorigenesis. The dysregulation of lncRNAs greatly contributes to the progression of various tumors through specific signaling pathways, including Wnt/ß-catenin signaling pathway, which is associated with malignant features of tumors. The interactions between lncRNAs, which have specific expression characteristics in diverse cancer tissues, and Wnt/ß-catenin signaling pathway, exhibit potential as novel biomarkers and therapeutic targets. In this review, we aim to present research findings on the roles of Wnt pathway-related lncRNAs and their effects on Wnt/ß-catenin signaling to regulate tumorigenesis in different cancer types. Results may be used as basis to develop or improve strategies for treatment of different carcinomas.


Assuntos
RNA Longo não Codificante/genética , Via de Sinalização Wnt/fisiologia , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...