Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1332788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699539

RESUMO

For a long time, human activities have been prohibited in ecologically protected areas in the Ebinur Lake Wetland National Nature Reserve (ELWNNR). The implementation of total closure is one of the main methods for ecological protection. For arid zones, there is a lack of in-depth research on whether this measure contributes to ecological restoration in the reserve. The Normalized Difference Vegetation Index (NDVI) is considered to be the best indicator for ecological monitoring and has a key role to play in assessing the ecological impacts of total closure. In this study, we used Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data to select optimal data and utilized Sen slope estimation, Mann-Kendall statistical tests, and the geographical detector model to quantitatively analyze the normalized difference vegetation index (NDVI) dynamics and its driving factors. Results were as follows: (1) The vegetation distribution of the Ebinur Lake Wetland National Nature Reserve (ELWNNR) had obvious spatial heterogeneity, showing low distribution in the middle and high distribution in the surroundings. The correlation coefficients of Landsat-8 and MODIS, Sentinel-2 and MODIS, and Sentinel-2 and Landsat-8 were 0.952, 0.842, and 0.861, respectively. The NDVI calculated from MODIS remote sensing data was higher than the value calculated by Landsat-8 and Sentinel-2 remote sensing images, and Landsat-8 remote sensing data were the most suitable data. (2) NDVI indicated more degraded areas on the whole, but the ecological recovery was obvious in the localized areas where anthropogenic closure was implemented. The ecological environment change was the result of the joint action of man and nature. Man-made intervention will change the local ecological environment, but the overall ecological environment change was still dominated by natural environmental factors. (3) Factors affecting the distribution of NDVI in descending order were as follows: precipitation > evapotranspiration > land use type > elevation > vegetation type > soil type > soil erosion > slope > temperature > slope direction. Precipitation was the main driver of vegetation change in ELWNNR. The synergistic effect of the factors showed two-factor enhancement and nonlinear enhancement, and the combined effect of the driving factors would increase the influence on NDVI.

2.
PLoS One ; 18(5): e0285610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167212

RESUMO

PM2.5 is closely linked to both air quality and public health. Many studies have used models combined with remote sensing and auxiliary data to inverse a large range of PM2.5 concentrations. However, the data's spatial resolution is limited. and better results might have been obtained if higher resolution data had been used. Therefore, this paper establishes a geographical and temporal weighted regression model (GTWR) and estimates the PM2.5 concentration in Xinjiang from 2015 to 2020 using 1 km resolution MCD19A2 (MODIS/Terra+Aqua Land Aerosol Optical Thickness Daily L2G Global 1km SIN Grid V006) data and 9 auxiliary variables. The findings indicate that the GTWR model performs better than the simple linear regression (SLR) and geographically weighted regression (GWR) models in terms of accuracy and feasibility in retrieving PM2.5 concentrations in Xinjiang. Simultaneously, by combining the GTWR model with MCD19A2 data, a spatial distribution map of PM2.5 with better spatial resolution can be obtained. Next, the regional distribution of annual PM2.5 concentrations in Xinjiang is consistent with the terrain from 2015 to 2020. The low value area is primarily found in the mountainous area with higher terrain, while the high value area is primarily in the basin with lower terrain. Overall, the southwest is high and the northeast is low. In terms of time change, the six-year PM2.5 shows a single peak distribution with 2016 as the inflection point. Lastly, from 2015 to 2020, the seasonal average PM2.5 concentration in Xinjiang has a significant difference, thereby showing winter (66.15µg/m3)>spring (52.28µg/m3)>autumn (40.51µg/m3)>summer (38.63µg/m3). The research shows that the combination of MCD19A2 data and GTWR model has good applicability in retrieving PM2.5 concentration.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...