RESUMO
Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.
Assuntos
Hélio , Pressão , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Hélio/química , Hidrodinâmica , Dióxido de Carbono/química , AdsorçãoRESUMO
Nano-gravimetric detector (NGD) has been recently introduced as miniaturized gas chromatography detector. The NGD response is based on an adsorption-desorption mechanism of compounds between the gaseous phase and the NGD porous oxide layer. The NGD response was characterized by hyphenating NGD in-line with FID detector and a chromatographic column. Such method led to the full adsorption-desorption isotherms of several compounds in a single run. Langmuir model was used to describe the experimental isotherms, and the initial slope of the isotherm (Mm.KT) obtained at low gas concentration was used to compare the NGD response for different compounds (good repeatability was demonstrated with a relative standard deviation lower than 3%). The column-NGD-FID hyphenated method was validated using alkane compounds according to the number of carbon atoms in the alkyl chain and to the NGD temperature (all results agreed with thermodynamic relations associated to partition coefficient). Furthermore, relative response factor to alkanes, for ketones, alkylbenzenes, and fatty acid methyl esters have been obtained. These relative response index values led to easier calibration of NGD. The established methodology can be used for any sensor characterization based on adsorption mechanism.