Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 312, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057843

RESUMO

The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.

2.
Eur J Pharm Sci ; 187: 106476, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37236377

RESUMO

Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Nanotecnologia , Nanomedicina , Técnicas de Transferência de Genes
3.
Anal Chim Acta ; 1252: 341017, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-36935143

RESUMO

Developing smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor. Accordingly, commercial polyurethane (PU) foam was first coated with graphene oxide (GO) to increase its surface area (8.45-fold), and improve its wettability. The surface of the resulting three-dimensional PU-GO (3DPU-GO) platform was then modified by MUC1 aptamer-GNCs to provide the required sensitivity and specificity through a turn "on/off" detection system. The proposed biosensor was first optimized with a spectrophotometer method. Afterward, findings were evaluated based on the red color intensity of the lab-in-a-tube system; and indicated the high ability of the biosensor for detection of MUC1-overexpressed tumor cell lines in the range of 250-20,000 cells mL-1 with a limit of detection of 221 cells mL-1. In addition, the developed biosensor showed a decent selectivity against positive-control cell lines (MCF-7, and HT-29) in comparison to negative-control cell lines (HEK293, and L929). Notably, the results represented good accordance with reference methods including spectroscopy devices. Ultimately, the results of this work bring a new perspective to the field of point-of-care detection and can be considered in future biosensors.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Mucina-1/metabolismo , Smartphone , Ouro/química , Células HEK293 , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Nanopartículas Metálicas/química
4.
Adv Biomed Res ; 12: 264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192884

RESUMO

Background: Recessive disruptive mutations in nucleotide excision repair genes are responsible for a wide range of cutaneous photosensitivity and, in some cases, are associated with multi-system involvement. The heterogeneous nature of these conditions makes next-generation sequencing the method of choice to detect disease-causing variants. Materials and Methods: A patient from a large multiplex inbred Iranian kindred with several individuals suffering from skin sun-sensitive manifestations underwent complete clinical and molecular evaluations. Whole exome sequencing (WES) was performed on the genomic sample of the proband, followed by bioinformatics analysis. Subsequently, co-segregation of the candidate variant with the condition was performed by Sanger sequencing. Results: A rare homozygous nonsense variant, c.1040G>A (p. Trp347*), was identified in the UVSSA gene, resulting in UV-sensitive syndrome (UVSS) complementation group A. The global minor allele frequency of the variant is < 0.001 in population databases. Tryptophan 347 residue is conserved among mammalians and vertebrates, and the null variant is believed to lead to a truncated protein with cellular mislocalization. Conclusions: Here, we report the first genetic diagnosis of UVSS-A in Iran via the successful application of Next-generation sequencing, which expands our understanding of the molecular pathogenesis of this condition.

5.
Genomics ; 113(1 Pt 2): 1221-1232, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007398

RESUMO

The outbreak of 2019-novel coronavirus disease (COVID-19), caused by SARS-CoV-2, started in late 2019; in a short time, it has spread rapidly all over the world. Although some possible antiviral and anti-inflammatory medications are available, thousands of people are dying daily. Well-understanding of the SARS-CoV-2 genome is not only essential for the development of new treatments/vaccines, but it also can be used for improving the sensitivity and specificity of current approaches for virus detection. Accordingly, we reviewed the most critical findings related to the genetics of the SARS-CoV-2, with a specific focus on genetic diversity and reported mutations, molecular-based diagnosis assays, using interfering RNA technology for the treatment of patients, and genetic-related vaccination strategies. Additionally, considering the unanswered questions or uncertainties in these regards, different topics were discussed.


Assuntos
COVID-19/virologia , Genoma Viral , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/terapia , Teste de Ácido Nucleico para COVID-19/métodos , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/farmacologia , Variação Genética , Genômica , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Técnicas de Diagnóstico Molecular/métodos , Mutação , Pandemias , Testes Imediatos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
6.
J Cell Biochem ; 121(2): 1307-1316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31489987

RESUMO

As a class of short noncoding RNAs, microRNAs (miRNAs) play a key role in the modulation of gene expression. Although, the regulatory roles of currently identified miRNAs in various cancer types including breast cancer have been well documented, there are many as yet undiscovered miRNAs. The aim of the current study was to bioinformatically reanalyze a list of 189 potentially new miRNAs introduced in a previously published paper (PMID: 21346806) and experimentally explore the existence and function of a candidate one: hsa-miR-B43 in breast cancer cells. The sequences of 189 potential miRNAs were re-checked in the miRbase database. Genomic location and conservation of them were assessed with the University of California Santa Cruz (UCSC) genome browser. SSC profiler, RNAfold, miRNAFold, MiPred, and FOMmiR bioinformatics tools were furthermore utilized to explore potential hairpin structures and differentiate real miRNA precursors from pseudo ones. hsa-miR-B43 was finally selected as one of the best candidates for laboratory verification. The expression and function of hsa-miR-B43 were examined by real-time polymerase chain reaction, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and wound-healing assays. DIANA-microT, RNAhybrid and Enrichr tools were used to predict the miRNA target genes and for further enrichment analysis. We could detect the exogenous and endogenous expression of hsa-miR-B43, as a real novel miRNA, in cancer cell lines. Gene Ontology enrichment, pathway analysis and wound-healing assay results furthermore confirmed that a metastasis-related function may be assigned to hsa-miR-B43. Our results introduced hsa-miR-B43, as a novel functional miRNA, which might play a role in the metastatic process. Further studies will be necessary to completely survey the existence and function of hsa-miR-B43 in other cancer types.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/secundário , Caderinas/metabolismo , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Software , Células Tumorais Cultivadas , Cicatrização
7.
Acta Diabetol ; 57(1): 81-87, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31309279

RESUMO

AIMS: Wolfram syndrome (WS) is a rare recessive neurodegenerative disorder characterized by diabetes mellitus and optic atrophy. Mortality and morbidity rate of the disease is high in adulthood due to neurological and respiratory defects. So far, two WS genes, WFS1 (more than 90% of cases) and CISD2, have been identified. In the present study, we aimed to determine the role of WFS2 in a group of Iranian WS families. METHODS: We recruited 27 families with the clinical diagnosis of WS. Homozygosity mapping was implemented using short tandem repeat polymorphic markers and bi-directional sequencing of the CISD2 gene in families negative for WFS1 mutations. The candidate variant was checked among family members. In silico analysis and protein modeling were applied to assess the pathogenic effect of the variant. Tetra-primers ARMS PCR was set up for checking the variant in 50 ethnic-matched controls. RESULTS: One family showed homozygosity by descent at WFS2. A novel missense variant, c.310T > C (p.S104P), was found in exon 2 of the CISD2 gene. Computational predictions revealed its pathogenic effect on protein structure, function, and stability. Parents and his healthy brother were heterozygous for the variant. The variant was not observed in the control group. CONCLUSIONS: This is the first study that elucidates the role of the CISD2 gene among Iranian WS families with a novel disease-causing missense variant. Next-generation sequencing could unravel disease-causing genes in remained families to expand genetic heterogeneity of WS.


Assuntos
Proteínas de Membrana/genética , Mutação Puntual , Síndrome de Wolfram/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Irã (Geográfico) , Masculino , Proteínas de Membrana/metabolismo , Mutação , Mutação de Sentido Incorreto , Polimorfismo Genético , Síndrome de Wolfram/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...