RESUMO
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. ß-Etherases play a crucial role by breaking down the ß-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in ß-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of ß-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of ß-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
RESUMO
Cyclophosphamide (CTX) is an anticancer medication that suppresses host immunity as well as adversely affects mucosal inflammation and gut microflora dysbiosis. The gut microflora is recognized as a substantial factor in host metabolism and immunological homeostasis. To improve immunity and inhibit cytotoxic and homeostatic imbalances triggered by CTX, it is essential to monitor immunoregulators. In this research, we assessed the impact of Octopus peptide hydrolysate (OPH) on immune modulation, intestinal integrity, and gut microbial composition in CTX-induced immune-deficient mice. The results revealed that OPH increased body weight, and immunological organ indices, and improved the histological changes in the colon, thymus, and spleen. The OPH stimulated the secretion of cytokines (IL-1ß, IL-6, and TNF-α) and antibodies (IgM and IgA) while reducing the ratio of lipopolysaccharide (LPS) and diamine oxidase (DAO) in the serum. OPH further enhanced goblet cell and mucus production, upregulated the expression of gut tight-junction proteins (Occludin, Zonula Occludin-1, Mucin-2, and Claudin-1), and activated the TLR4/NF-κB cascade (p-IκBα, P65/p-p65). In addition, OPH treatment declined the Bacteroidetes/Firmicutes ratio, enhanced the relative ratio of Alistipes/Lachnospiraceae, and reversed the ecological equilibrium of the gut microflora. The findings revealed that OPH serves as a prebiotic to prevent CTX-mediated disruption in the intestinal barrier and boosts gut mucosal immunity by attenuating gut microflora imbalance, implying that OPH could be used as an immunological ingredient in nutritious foods to regulate the immune system and protect the gut from inflammatory diseases.
RESUMO
BACKGROUND: Cadmium chloride (Cd) is a pervasive environmental heavy metal pollutant linked to mitochondrial dysfunction, memory loss, and genetic disorders, particularly in the context of neurodegenerative diseases like Alzheimer's disease (AD). METHODS: This study investigated the neurotherapeutic potential of vitamin B6 (Vit. B6) in mitigating Cd-induced oxidative stress and neuroinflammation-mediated synaptic and memory dysfunction. Adult albino mice were divided into four groups: Control (saline-treated), Cd-treated, Cd+Vit. B6- treated, and Vit. B6 alone-treated. Cd and Vit. B6 were administered intraperitoneally, and behavioral tests (Morris Water Maze, Y-Maze) were conducted. Subsequently, western blotting, antioxidant assays, blood glucose, and hyperlipidemia assessments were performed. RESULTS: Cd-treated mice exhibited impaired cognitive function, while Cd+Vit. B6-treated mice showed significant improvement. Cd-induced neurotoxic effects, including oxidative stress and neuroinflammation, were observed, along with disruptions in synaptic proteins (SYP and PSD95) and activation of p-JNK. Vit. B6 administration mitigated these effects, restoring synaptic and memory deficits. Molecular docking and MD simulation studies confirmed Vit. B6's inhibitory effect on IL-1ß, NRF2, and p-JNK proteins. CONCLUSION: These results highlight Vit. B6 as a safe therapeutic supplement to mitigate neurodegenerative disorders, emphasizing the importance of assessing nutritional interventions for combating environmental neurotoxicity in the interest of public health.
RESUMO
BACKGROUND: Traditional medicine (TM) interventions are plausible therapeutic alternatives to conventional medical interventions against emerging and endemic zoonotic diseases, particularly in low-and middle-income countries that may lack resources and infrastructure. Despite the growing popularity in the usage of TM interventions, their clinical safety and effectiveness are still contested within conventional healthcare in many countries. METHODS: We conducted a scoping review of the peer-reviewed literature that synthesises and maps the evidence on TM interventions for the treatment and prevention of zoonoses on the Indian subcontinent. The region, a global hotspot of biodiversity and emerging infections, is characterised by high prevalence of TM use. Based on the scientific literature (mostly case study research, n=l06 studies), our review (1) maps the scope of the literature, (2) synthesises the evidence on the application of TM interventions for zoonoses, and (3) critically reflects on the state of TM and identifies areas for future research focus. RESULTS: The evidence synthesis confirmed widespread usage of TM interventions for zoonoses on the subcontinent, with the majority of research reported from India (n=99 studies, 93.4%), followed by Pakistan (n=3 studies, 2.8%), Bangladesh (n=2 studies, 1.9%), and Sri Lanka (n=1, 0.9%). Most of the reviewed studies reported on ethno-medicinal uses of plant species, primarily for treating dengue (n=20 studies), tuberculosis (n=18 studies), Escherichia coli infection (n=16 studies), lymphatic filariasis and cholera (n=9 apiece). However, the evidence on the safety and effectiveness of these reported TM interventions is limited, indicating that these data are rarely collected and/or shared within the peer-reviewed literature. CONCLUSION: This review thus highlights that, whilst TMs are already being used and could offer more widely accessible interventions against emerging and endemic zoonoses and ectoparasites, there is an urgent need for rigorous clinical testing and validation of the safety and effectiveness of these interventions.
Assuntos
Medicina Tradicional , Zoonoses , Humanos , Medicina Tradicional/métodos , Animais , Índia , Revisão por ParesAssuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Islamismo , Humanos , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/transmissão , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Arábia Saudita/epidemiologia , Animais , Influenza Aviária/transmissão , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Aves/virologia , ViagemRESUMO
Industrialization and population growth are leading to the production of significant amounts of sewage containing hazardous xenobiotic compounds. These compounds pose a threat to human and animal health, as well as the overall ecosystem. To combat this issue, chemical, physical, and biological techniques have been used to remove these contaminants from water bodies affected by human activity. Biotechnological methods have proven effective in utilizing microorganisms and enzymes, particularly laccases, to address this problem. Laccases possess versatile enzymatic characteristics and have shown promise in degrading different xenobiotic compounds found in municipal, industrial, and medical wastewater. Both free enzymes and crude enzyme extracts have demonstrated success in the biotransformation of these compounds. Despite these advancements, the widespread use of laccases for bioremediation and wastewater treatment faces challenges due to the complex composition, high salt concentration, and extreme pH often present in contaminated media. These factors negatively impact protein stability, recovery, and recycling processes, hindering their large-scale application. These issues can be addressed by focusing on large-scale production, resolving operation problems, and utilizing cutting-edge genetic and protein engineering techniques. Additionally, finding novel sources of laccases, understanding their biochemical properties, enhancing their catalytic activity and thermostability, and improving their production processes are crucial steps towards overcoming these limitations. By doing so, enzyme-based biological degradation processes can be improved, resulting in more efficient removal of xenobiotics from water systems. This review summarizes the latest research on bacterial laccases over the past decade. It covers the advancements in identifying their structures, characterizing their biochemical properties, exploring their modes of action, and discovering their potential applications in the biotransformation and bioremediation of xenobiotic pollutants commonly present in water sources.
Assuntos
Lacase , Água , Animais , Humanos , Lacase/metabolismo , Ecossistema , Xenobióticos , Biotransformação , Biodegradação AmbientalRESUMO
Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: ⢠Promising potential of isobutanol to replace gasoline ⢠Engineering of native and non-native microbial host for isobutanol production ⢠Challenges and opportunities for enhanced isobutanol production.
Assuntos
Biocombustíveis , Gasolina , Butanóis , Clonagem MolecularRESUMO
Satellite-based land cover mapping plays an important role in understanding changes in ecosystems and biodiversity. There are global land cover products available, however for region specific studies of drivers of infectious disease patterns, these can lack the spatial and thematic detail or accuracy required to capture key ecological processes. To overcome this, we produced our own Landsat derived 30 m maps for three districts in India's Western Ghats (Wayanad, Shivamogga and Sindhudurg). The maps locate natural vegetation types, plantation types, agricultural areas, water bodies and settlements in the landscape, all relevant to functional resource use of species involved in infectious disease dynamics. The maps represent the mode of 50 classification iterations and include a spatial measure of class stability derived from these iterations. Overall accuracies for Wayanad, Shivamogga and Sindhudurg are 94.7 % (SE 1.2 %), 88.9 % (SE 1.2 %) and 88.8 % (SE 2 %) respectively. Class classification stability was high across all three districts and the individual classes that matter for defining key interfaces between human habitation, forests, crop, and plantation cultivation, were generally well separated. A comparison with the 300 m global ESA CCI land cover map highlights lower ESA CCI class accuracies and the importance of increased spatial resolution when dealing with complex landscape mosaics. A comparison with the 30 m Global Forest Change product reveals an accurate mapping of forest loss and different dynamics between districts (i.e., Forests lost to Built-up versus Forests lost to Plantations), demonstrating an interesting complementarity between our maps and the % tree cover Global Forest Change product. When studying infectious disease responses to land use change in tropical forest ecosystems, we recommend using bespoke land cover/use classifications reflecting functional resource use by relevant vectors, reservoirs, and people. Alternatively, global products should be carefully validated with ground reference points representing locally relevant habitats.
Assuntos
Doenças Transmissíveis , Ecossistema , Humanos , Conservação dos Recursos Naturais , Florestas , BiodiversidadeRESUMO
Entropy generation is a concept that is primarily associated with thermodynamics and engineering, and it plays a crucial role in understanding and optimizing various processes and systems. Applications of entropy generation can be seen in turbo machinery, reactors, chillers, desert coolers, vehicle engines, air conditioners, heat transfer devices and combustion. Due to industrial applications entropy generation has gained attention of researchers. Owing such applications, current communication aims to model and analyzed the irreversibility in Sutterby nanoliquid flow by stretched cylinder. Momentum equation is reported by considering porosity, Darcy Forchheimer and magnetic field. While in energy equation radiation and Joule heating effects are accounted. Activation energy impact is accounted in the modeling of concentration equation. Thermodynamics second law is utilized for physical description of irreversibility analysis. Through similarity transformations dimensional equations representing flow are transformed to dimensionless ones. Numerical solution for ordinary system is obtained via Runge-Kutta-Fehlberg scheme in Mathematica platform through NDsolve code. Influence of prominent variables on velocity, entropy, temperature, Bejan number and concentration are graphically analyzed. Coefficient of skin friction, gradient of temperature and Sherwood number are numerically analyzed. The obtained results show that velocity field decreases through higher porosity and Forchheimer variables. Velocity and temperature curves shows an opposite trend versus magnetic parameter. A decay in concentration distribution is noticed through larger Schmidt number. Entropy generation amplifies against magnetic parameter and Brinkman number.
RESUMO
Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.
Assuntos
Vesículas Extracelulares , Fungos , Fungos/química , Fungos/classificação , Fungos/citologia , Fungos/patogenicidade , Vesículas Extracelulares/química , Micoses/microbiologia , Humanos , Animais , Biofilmes , Vacinas Fúngicas/imunologia , Imunoterapia , BiomarcadoresRESUMO
Due to limited chemotherapeutic options for leishmaniasis, novel synthetic compounds are gaining attention for evaluation against leishmaniasis. This study aimed to synthesize the compound's Schiff bases of Vanillin to investigate and evaluate their anti-leishmanial potentials against intracellular protozoan parasites Leishmania tropica. In the current study, the phenomena of synergism by designing Schiff bases with Vanillin enhances their desired importance. A total of five compounds Schiff bases of Vanillin were synthesized using different aromatic amines and Vanillin. The structural analysis of all the compounds was done through FT-IR (Fourier Transformer-Infrared), thin layer chromatography, and spectroscopic techniques such as 13C-NMR, mass spectrometry, and 1H-NMR. The antimicrobial properties of all the compounds ZI-1, ZI-2, BS-1, KH-1, and FA-2 against promastigotes and amastigotes forms of L. tropica were analyzed at three different concentrations 25, 50, and 100 µg/ml. The in-vitro MTT assay was performed to calculate the percent inhibition, IC50 values, and their cytotoxicity. The highest percent inhibition values against promastigote form of L. tropica were BS-1 53.78% at 25 µg/ml, ZI-2 66.95% at 50 µg/ml, and again ZI-2 76.92% at 100 µg/ml. Similarly, the highest percent inhibition values against intracellular amastigote stage were BS-1 55.77% at 25 µg/ml, ZI-2 67.78% at 50 µg/ml and again ZI-2 84.93% 100 µg/ml. The highest potency was recorded for BS-1 in both stages, with IC50 values of 9.83 and 4.27 µg/ml against promastigotes and intracellular amastigotes, respectively. The percent hemolysis as toxicity; the lowest percent hemolysis was recorded for ZI-1 at three different concentrations of 25, 50, 100 µg/ml of 2.60, 3.50, and 6.31, respectively. These results suggested that all the compounds exhibited anti-leishmanial activity, with BS-1 as the most potent. Further studies are suggested to increase the activity of compounds with structural modifications by the addition of some other synergistic, novel, and analogue compounds.
RESUMO
In this communication irreversibility minimization in bio convective Walter's-B nanofluid flow by stretching sheet is studied. Suspended nanoparticles in Walter's-B fluid are stabilized by utilizing microorganisms. Total irreversibility is obtained via thermodynamics second law. The influences of applied magnetic field, radiation, Joule heating and activation energy are accounted in momentum, temperature and concentration equations. Furthermore thermophoresis and Brownian movement impacts are also accounted in concentration and temperature expressions. The flow governing dimensional equations are altered into dimensionless ones adopting transformation procedure. Homotopy Analysis Method (HAM) code in Mathematica is implemented to get the convergent series solution. The influences of important flow variables on temperature, velocity, motile density, irreversibility, mass concentration, Bejan number and physical quantities are analyzed graphically. The obtained results revel that the velocity profile decreases for escalating magnetic parameter and Forchheimer number. Entropy generation is increased for higher Brinkman variable while Bejan number declines versus Brinkman variable. The important observations are given at the end.
RESUMO
Introduction: The primary objective of this study was to evaluate the baseline characteristics of Lynch syndrome (LS). Furthermore, the study aimed to evaluate overall survival (OS) among patients with LS. Materials and Methods: This was a retrospective study of colorectal cancer patients registered from January 2010 to August 2020 with an immunohistochemical diagnosis of LS. Results: A total of 42 patients were assessed. The mean age at presentation was 44 years, with male predominance (78%). Demographic preponderance was from the North of Pakistan (52.4%). The family history was positive in 32 (76.2%) patients. The colonic cancer distribution was 32 (76.2%) on the right side. Most of the patients presented with Stage II disease (52.4%), and the common mutations were MLH1 + PMS2 16 (38.1%) followed by MSH2 + MSH6 9 (21.4%). The 10-year OS was found to be 88.1%. However, the OS was 100% post pancolectomy. Conclusion: LS is prevalent in the Pakistan population, especially in the North of Pakistan. Clinical presentation and survivals are similar to the Western population.
RESUMO
Polyarteritis nodosa (PAN) is a necrotizing vasculitis commonly affecting small-sized vessels and medium-sized vessels. We present the case of surgical resection for ischemic colitis secondary to PAN. A 26-year-old woman presented with left lower quadrant pain, diarrhea and bloody stools. Colonoscopy showed diffuse circumferential ulceration and necrotic lining from the sigmoid colon to the splenic flexure. A subsequent computed tomography angiography (CTA) revealed left colonic wall thickening, hypoenhancement and multiple inferior mesenteric artery aneurysms, concerning for vasculitis. Ensuing laboratory workup all returned negative. Worsening pain, left-sided peritonitis, tachycardia and rising white blood cell necessitated a colectomy from the proximal descending to upper rectum with an end colostomy. Surgical pathology showed features consistent with PAN. The patient improved significantly after surgery and was discharged on a steroid taper and later started on mycophenolate mofetil. This case is a unique presentation of isolated large intestinal involvement and was treated with both medical and surgical interventions.
RESUMO
Forest-based communities manage many risks to health and socio-economic welfare including the increasing threat of emerging zoonoses that are expected to disproportionately affect poor and marginalised groups, and further impair their precarious livelihoods, particularly in Low-and-Middle Income (LMIC) settings. Yet, there is a relative dearth of empirical research on the vulnerability and adaptation pathways of poor and marginalised groups facing emerging zoonoses. Drawing on a survey of 229 households and a series of key-informant interviews in the Western Ghats, we examine the factors affecting vulnerability of smallholder and tribal households to Kyasanur Forest Disease (KFD), an often-fatal tick-borne viral haemorrhagic fever endemic in south India. Specifically, we investigate how different socio-demographic and institutional factors interact to shape KFD vulnerability and the strategies employed by households to adapt to disease consequences. Although surveyed households generally perceived KFD as an important health issue in the study region, there was variability in concern about contracting the disease. Overall results showed that poor access to land (AOR = 0.373, 95% CI: 0.152-0.916), being at or below the poverty line (AOR = 0.253, 95% CI: 0.094-0.685) and being headed by an older person (AOR = 1.038, 95% CI: 1.006-1.071) were all significant determinants of perceived KFD vulnerability. Furthermore, KFD vulnerability is also modulated by important extra-household factors including proximity to private hospitals (AOR = 3.281, 95% CI: 1.220-8.820), main roads (AOR = 2.144, 95% CI: 1.215-3.783) and study location (AOR = 0.226, 95% CI: 0.690-0.743). Our findings highlight how homogenous characterisation of smallholder and tribal communities and the 'techno-oriented' approach of existing interventions may further marginalise the most vulnerable and exacerbate existing inequalities. These findings are important for designing context-specific and appropriate health interventions (including the prioritisation of awareness raising, knowledge networks, livelihood diversification) that enhances the resilience of at-risk social groups within the KFD context. More broadly, our findings highlight how a focus on social vulnerability can help national and international health planners improve health interventions and prioritise among diseases with respect to neglected endemic zoonoses.
RESUMO
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
RESUMO
The purpose of this study is to evaluate the arsenic concentration and related health risks in groundwater extracted from tube wells. The physicochemical parameters, including arsenic (As), were investigated using standard procedures. The parameters were found within the permissible limits except for arsenic, which was 78 µg/L. Unfortunately, 82% of the collected water samples were found contaminated with arsenic and exceeded the permissible limit set by the world health organization (10 µg/L). The water intake and its relationship between arsenic concentration, time, and induced symptoms in the study area residents were observed. Skin pigmentation, skin irritation, and numbness of the body were recognized as the major symptoms, and these symptoms were significantly correlated with p-value Ë 0.05. In comparison, individuals who intake As-contaminated water (> 50 µg/L) for a duration of > 20 years show severe symptoms. Furthermore, health risk assessment associated with arsenic in terms of chronic daily intake (CRI), hazard quotient (HQ), and cancer risk assessment probability (CR) in groundwater was also studied. The HQ of arsenic was 7.46, and the CR value of As on Ravi road was as high as 0.00149, which indicates a possibility of cancer risk in the community Ravi road, Lahore. Based on the findings, the study area needs special monitoring and management of groundwater to reduce health risks associated with contaminated drinking water. Moreover, suitable remediation methods for removing arsenic should be adopted to avoid arsenic exposure and related health risks.
Assuntos
Arsênio , Água Potável , Água Subterrânea , Neoplasias , Poluentes Químicos da Água , Arsênio/análise , Água Potável/análise , Monitoramento Ambiental , Humanos , Paquistão , Medição de Risco/métodos , Poluentes Químicos da Água/análiseRESUMO
There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes.
RESUMO
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
RESUMO
OBJECTIVE: To systematically review studies reporting reliability of modified functional reach test for the assessment of sitting balance function in people with spinal cord injury. METHODS: The systematic review was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, and comprised research studies published in English language from the earliest record till October 2019 on the subject of reliability of modified functional reach test in assessing balance function in adult spinal cord injury patients.. Prominent databases were searched with relevant key words to shortlist the targeted studies. RESULTS: Of the 108 studies retrieved initially, 6(5.55%) were included in the current systematic review. All the 6(100%) studies reported only test-retest reliability of modified functional reach test. Of them, 4(66.6%) studies measured only forward reach, while 2(33.3%) measured reach in different directions. All 6(100%) studies reported good to excellent reliability of modified functional reach test with interclass coefficient values ranging from 0.78 to 0.99. CONCLUSIONS: Modified functional reach test was found to be a reliable tool for assessing sitting balance function in individuals with spinal cord injury.