Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 107: 104389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360333

RESUMO

Semicarbazide (SEM), a marker residue used to monitor the use of prohibited drug nitrofurazone (NFZ), is commonly found in wild crustaceans, implying the natural origin. However, the difference between endogenous and exogenous SEM has rarely been investigated. So, tissue-bound SEM was determined in samples collected from giant river prawns cultured in an aquaculture farm and in samples from an experiment where giant river prawns were fed twice a day with NFZ at 30 mg/kg for 5 days. At day 10 of drug withdrawal, muscle SEM of the NFZ-fed prawn was 17.78 ng/g and depleted to 1.18 ng/g at day 90 (half-life 20.31 days) which was significantly higher than the control prawn (usually ≤ 0.1 ng/g). In contrast, the average SEM in the shell was independent of NFZ treatment. SEM was not found in the aquaculture farm samples, implying that the SEM in cultured prawn did not originate from SEM contamination.


Assuntos
Palaemonidae , Penaeidae , Semicarbazidas , Animais , Nitrofurazona , Administração Oral , Aquicultura
2.
J Vet Pharmacol Ther ; 47(1): 36-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37593974

RESUMO

Toltrazuril (TZR) is currently the only registered chemotherapeutic drug in the European Union for the treatment of Cystoisospora suis. This study investigated the comparative pharmacokinetics and tissue concentration-time profiles of TZR and its active metabolite, toltrazuril sulfone (TZR-SO2 ), after oral (per os, p.o.) and intramuscular (i.m.) administration to suckling piglets. Following a single administration of TZR orally at 50 mg/piglet or intramuscularly at 45 mg/piglet, higher concentrations of TZR and TZR-SO2 were observed in all three investigated tissues after p.o. administration. The mean TZR concentration in serum peaked at 14 µg/mL (34.03 h) and 5.36 µg/mL (120 h), while TZR-SO2 peaked at 14.12 µg/mL (246 h) and 9.92 µg/mL (330 h) after p.o. and i.m. administration, respectively. TZR was undetectable in the liver after p.o. administration (18 days) and in the jejunum (24 days) after i.m. injection, while TZR-SO2 was still detectable in all three tissues after 36 days regardless of administration routes. This study showed that p.o. formulation exhibited faster absorption and higher serum/tissue TZR/TZR-SO2 concentrations than i.m. formulation. Both formulations generated sufficient therapeutic concentrations in the serum and jejunum, and sustained enough time to protect against Cystoisospora suis infection in the piglets.


Assuntos
Coccidiostáticos , Animais , Suínos , Administração Oral , Triazinas , Sulfonas , Injeções Intramusculares/veterinária
3.
J Vet Pharmacol Ther ; 47(1): 62-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047430
4.
Vet Sci ; 10(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37756061

RESUMO

This study was conducted to determine the optimal doses and minimum effective concentrations (MECs) of tricaine methanesulfonate (MS-222) in marketable-size Asian seabass reared at two temperatures (22 and 28 °C). Serum biochemical parameters, pharmacokinetics, and tissue distributions of MS-222 following immersion at the determined optimal doses were also evaluated in order to delineate possible mechanisms dictating the temperature difference. The definition of optimal dose is set as the dose when fish attain stage III anesthesia within 5 min, sustain this stage for 3 min, and re-attain equilibrium within 5 min. The MEC is the fish serum MS-222 concentration when stage III anesthesia is reached. The results showed that water temperature exerted no or minimal impact on the designated parameters. The optimal doses at 22 and 28 °C were 140 and 150 µg/mL, while the MECs were 70.48 and 78.27 µg/mL, respectively. Fish exposed to the optimal doses of MS-222 had significantly elevated blood concentrations of lactate, glucose, calcium, magnesium, and sodium, while the blood pH was significantly decreased. The fish eliminated MS-222 faster at 28 °C than at 22 °C, with serum half-lives of 18.43 and 37.01 h, respectively. Tissue-specific distribution patterns were evident. Irrespective of water temperature, MS-222 peaked at 5 min for the brain and gill but peaked slightly later at 10-20 min for the liver and kidney. Most tissues exhibit a gradual decline of drug concentration except for the gill, which was maintained at a steady level. Muscle is the least perfused tissue with the lowest drug concentration throughout the 90 min period. This study provided physiological and pharmacokinetic evidence contributing to a better understanding of the actions of MS-222 in Asian seabass at different temperatures.

5.
J Vet Pharmacol Ther ; 46(2): 136-143, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36691109

RESUMO

Starvation has influence on physiology and pharmacokinetic (PK) characteristics of many drugs in land animals. However, similar PK information in fish is lacking. The current study examined the effects of starvation on fish PK, taking florfenicol (FF) in Asian seabass as an example. FF was orally administered at a single dose of 10 mg/kg into 35-day starved fish reared at 25 and 30°C and the serum FF concentration was analyzed by HPLC-FLD. At 30°C, the absorption and elimination half-lives of the starved fish were increased by 30% (from 0.44 to 0.57 h) and 55% (from 7.2 to 11.18 h), respectively. The volume of distribution, clearance, and area under the curve were changed from 1.25 to 0.71 L/kg, 0.120 to 0.044 L/kg/h, and 88 to 228 h·µg/ml, respectively. Similar starvation-induced PK changes were also observed at 25°C. The serum biochemical parameters, mainly the alanine aminotransferase, aspartate aminotransferase, and glucose levels, were significantly reduced in the starvation group. Overall, FF absorption, distribution, and elimination rates were reduced by starvation, resulting in four to five times lower optimal dosage than the non-starved fish. Drug treatment in starved fish should be treated with caution as overdosing and/or tissue residues could perceivably occur.


Assuntos
Peixes , Inanição , Tianfenicol , Animais , Tianfenicol/administração & dosagem , Tianfenicol/farmacocinética , Peixes/sangue
6.
J Fish Dis ; 46(1): 75-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36179060

RESUMO

Asian seabass (Lates calcarifer) is an economically important fish in Asian and Australian markets, but few pharmacokinetic (PK) data of antimicrobial drugs in this species is available. The present study investigated the PK behaviour of florfenicol (FF) through medicated feed in Asian seabass cultured at 25°C. The serum and muscle/skin concentrations of FF and its metabolite florfenicol amine (FFA) were determined by the HPLC-FLD method and analysed by one-compartmental model. The optimal dosages were determined by pharmacokinetic-pharmacodynamic (PK-PD) approach and the linear regression analysis was used to determine the withdrawal time (WDT). The PK study following a single oral administration of 15 mg/kg FF via medicated feed revealed that the absorption half-life (t1/2Ka ), elimination half-life (t1/2K ), peak concentration (Cmax ), area under the concentration-time curve (AUC), volume of distribution (Vd/F) and clearance (CL/F) were 1.47 h, 8.07 h, 8.61 µg/ml, 146.41 h·µg/ml, 1.19 L/kg and 0.102 L/kg/h, respectively. The muscle/skin concentration-time profile was similar to that of the serum, suggesting well distribution but only a small fraction of FF was metabolized to FFA. The optimal dosage for a minimum inhibitory concentration of 2 µg/ml was calculated as 13.38 mg/kg/day. The appropriate WDT after multiple oral medications with 15 mg/kg FF once daily for 7 days was determined as 8 days. Information obtained from the current study can potentially be applied for the treatment of bacterial diseases in farming Asian seabass.


Assuntos
Doenças dos Peixes , Animais , Austrália , Testes de Sensibilidade Microbiana , Administração Oral
7.
Artigo em Inglês | MEDLINE | ID: mdl-36520459

RESUMO

Drug behavior in the bodies of fish is largely influenced by the water temperature. Antimicrobial drugs are needed for the control of bacterial outbreaks in farmed fish including Asian seabass (Lates calcarifer). However, little is known about the temperature effect on appropriate drug uses in this species. The purpose of this study was to investigate the differences in pharmacokinetics (PK), optimal dosages, tissue depletion, and withdrawal time (WDT) of florfenicol (FF) in Asian seabass reared at 25 and 30 °C. In the PK study, the fish were administered with a single oral dose of 10 mg/kg FF. The optimal dosing regimen was determined by the pharmacokinetic-pharmacodynamic (PK-PD) approach. In the tissue depletion and WDT study, FF was administered at the optimal dosages once daily for 5 days and the WDT was determined by linear regression analysis based on the sum of FF and its metabolite florfenicol amine (FFA) in the muscle/skin. When the temperature was increased from 25 to 30 °C, the elimination half-life of FF was significantly decreased from 11.0 to 7.2 h. While the other PK parameters were not changed significantly, the calculated optimal dosages for the target minimum inhibitory concentration (MIC) of 2 µg/mL were 10.9 and 22.0 mg/kg/day, respectively for 25 and 30 °C. The sum of FF + FFA is a preferable marker residue for WDT determination because differential FF metabolism was observed at different temperatures. The depletion half-life of the muscle/skin was shortened from 41.1 to 32.4 h by the 5 °C temperature increase. Despite different absolute amounts of FF given between the two temperature levels, the WDTs were very similar at 6-7 days. Thus, it appears that a single temperature-independent WDT can potentially be assigned when the drug was applied at the optimal dosage.


Assuntos
Perciformes , Tianfenicol , Animais , Antibacterianos/análise , Temperatura , Perciformes/metabolismo
8.
Front Vet Sci ; 9: 826586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300219

RESUMO

Prudent antimicrobial use requires knowledge of pharmacokinetics (PK) in a specific fish species which in turn depends on water temperature and salinity. Although the influence of each individual factor is known, the combined effect is less clear. The objective of the current study was to investigate the effect of temperature and salinity concurrently on the PK of florfenicol (FF) in Nile tilapia reared in brackish water. Twenty-eight fish were divided into four groups and kept at one of two temperatures (24 vs. 32°C) and two salinity levels (5 vs. 15 ppt). The FF was administered at a single dose of 15 mg/kg body weight via oral gavage. The serum concentrations were analyzed by HPLC method and the PK parameters were analyzed by a 2-compartmental model. The result revealed that at 32°C, the elimination half-lives (t1/2ß), time to reach the peak concentration (Tmax), area under the serum concentration-time curve (AUC), and mean residence time (MRT) were significantly decreased, while the clearance relative to bioavailability (CL/F) significantly increased compared to those at 24°C. The extents of these PK changes were similar at the two salinity levels. On the contrary, increasing the salinity from 5 to 15 ppt at a given temperature level produced no significant change in the PK behavior. Our finding indicated that only water temperature, but not salinity, is the major determinant factor governing the FF fate in the fish body.

9.
PLoS One ; 16(9): e0257792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34559852

RESUMO

Spray-dried animal plasma (SDP) in feed for several animal species provides health benefits, but research about use of SDP in shrimp feed is very limited. The objectives of the present study were to investigate the effects of dietary SDP on growth performance, feed utilization, immune responses, and prevention of Vibrio parahaemolyticus infection in Pacific white shrimp (Litopenaeus vannamei). In Experiment 1, the post-larvae were divided into five groups (four tank/group and 80 shrimp/tank) and fed four times daily diets with porcine SDP at 0, 1.5, 3, 4.5, and 6% of the diet for 45 days. In Experiment 2, the surviving shrimp from Experiment 1 were redistributed into six groups: four SDP groups as in Experiment 1 plus the positive and negative controls (four tank/group and 30 shrimp/tank). They were then challenged with V. parahaemolyticus by immersion at 105 colony-forming units (CFU)/mL and were fed with the same diets for another 4 days. In Experiment 1, shrimp fed 4.5% or 6% SDP diets had significantly higher body weight, survival rate, and improved feed conversion ratio. The immune parameters (total hemocyte count and phagocytic, phenoloxidase, and superoxide dismutase activities) of the shrimp fed 3-6% SDP diets also showed significant enhancement compared to the control. In Experiment 2, the survival rates of the 3-6% SDP groups were significantly higher than the positive control at day 4 after the immersion challenge. Likewise, the histopathological study revealed milder signs of bacterial infection in the hepatopancreas of the 3-6% SDP groups compared to the challenged positive control and 1.5% SDP groups. In conclusion, shrimp fed diets with SDP, especially at 4.5-6% of the diet, showed significant improvement in overall health conditions and better resistance to V. parahaemolyticus infection.


Assuntos
Suplementos Nutricionais/análise , Resistência à Doença , Penaeidae/crescimento & desenvolvimento , Plasma/química , Vibrio parahaemolyticus/imunologia , Ração Animal/análise , Animais , Peso Corporal , Hemócitos/metabolismo , Imunidade Inata , Larva/crescimento & desenvolvimento , Larva/imunologia , Larva/virologia , Penaeidae/imunologia , Penaeidae/virologia , Fagócitos/metabolismo , Secagem por Atomização , Suínos
10.
Animals (Basel) ; 11(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073776

RESUMO

Anesthetic agents are often used in fish experiments to reduce the stress and struggle and to improve animal welfare. The present study aimed to determine the optimal doses and serum minimum effective concentration (MEC) of tricaine methanesulfonate (MS-222), 2-phenoxyethanol (2-PE), and eugenol (EUG) in Nile tilapia. Twenty-one fish were immersed in three different doses of each anesthetic and the minimal dose that produce stage III anesthesia within 5 min, maintain anesthesia status for 3 min, and recover within 5 min was considered the optimal dose. The serum concentrations of anesthetics immediately after the fish reached stage III anesthesia was defined as the MEC. The results revealed that the anesthetics dose-dependently shorten the induction time while the effect of doses on the recovery times were variable. The determined optimal doses for MS-222, 2-PE, and EUG were 300, 900, and 90 ppm, respectively. The MECs were 70, 263, and 53 µg/mL, respectively, about two to four times lower than the optimal doses and were independent of the doses. After immersion stopped, the serum concentrations decreased by >90% within the first hour and >99% after 4 h. Our research provides useful information for a smooth fish handling and design for researches requiring stage III anesthesia.

11.
PLoS One ; 16(5): e0251343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33956913

RESUMO

Isoquinoline alkaloids (IQs) from Macleaya cordata are promising natural products for enhancing the growth performance and overall health condition of farmed animals. The present study aimed to investigate the effects of two formulas of IQ extract, provided in either a powdered formula (IQ-E) or a water-soluble, granulated formula (IQ-WS) and containing the main active component sanguinarine at a concentration of 0.5% and 1%, respectively, on the growth, survival, immune response, and resistance to Vibrio parahaemolyticus infection of Pacific white shrimp (Litopenaeus vannamei). In Experiment 1, the postlarvae were divided into five groups (four replicates/group and 100 shrimp/tank) and fed four times/day for 30 days with a control feed, IQ-E at 200 or 300 mg/kg of feed, or IQ-WS at 100 or 150 mg/kg of feed. In Experiment 2, the surviving shrimp from Experiment 1 were redistributed into six groups (four treatment groups as in Experiment 1 plus the positive and negative controls with four replicates/group and 30 shrimp/tank) and challenged with V. parahaemolyticus by immersion at a concentration of 103 colony-forming units (CFU)/mL and were fed with the same diets for another 14 days. The results revealed that all IQ-fed shrimp in Experiment 1 had significantly enhanced survival rates and immune parameters (total hemocyte count and phagocytic, phenoloxidase, and superoxide dismutase activities) compared to the control group, even though the growth performances were similar across all groups. In Experiment 2, all IQ-fed groups showed better growth performance and survival rates compared to the positive control. Other than in the positive control group, no histopathological lesions in the hepatopancreas and the intestine were found. In summary, the current study demonstrated the benefits of using IQs from M. cordata as feed additives for improving the growth performance, survival rate, immune responses, and resistance to vibriosis of Pacific white shrimp.


Assuntos
Alcaloides/uso terapêutico , Antibacterianos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Isoquinolinas/uso terapêutico , Papaveraceae , Penaeidae/efeitos dos fármacos , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio parahaemolyticus/efeitos dos fármacos , Animais , Papaveraceae/química , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/microbiologia
12.
J Vet Pharmacol Ther ; 43(6): 520-526, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32573800

RESUMO

Drug administration by immersion can be a preferable method in certain conditions especially for treating small-sized, anorexic, or valuable fish. Pharmacokinetic information regarding bath treatment is considerably lacking in comparison to other common administration routes. The current study aimed to investigate if immersion can be an effective route to administer florfenicol (FF) for treatment in Nile tilapia. Nile tilapia reared at 28°C were immersed with FF solution at concentrations of 50, 100, 200, 500, and 500/200 (3 hr/117 hr) ppm for 120 hr and moved to drug-free freshwater for another 24 hr. The serum FF concentration in 100, 200, and 500/200 ppm groups reached steady-state at 12 hr with concentrations of 2.44, 3.04, and 5.26 µg/ml, respectively, which were about 2% of the bathing concentrations. The target therapeutic levels of 1-4 µg/ml were attained and maintained within 1-12 hr, depending on the immersion concentration and the target MIC. Serum FF reached the target with shorter time at higher bathing concentration. Following the 120-hr bath, the serum FF declined with the first-order half-life of approximately 10 hr. A minimum of 100 ppm FF is required for treatment purpose, and an initial high loading concentration followed by maintenance concentration is a plausible way to reach in vivo therapeutic level in short time. Greater than 99% of the residual FF in the bathing water could be removed within 15 min by 0.05% NaOCl. Our results indicated that bath immersion is a promising potential route for FF administration in Nile tilapia.


Assuntos
Antibacterianos/farmacocinética , Ciclídeos/sangue , Tianfenicol/análogos & derivados , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Área Sob a Curva , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Meia-Vida , Tianfenicol/administração & dosagem , Tianfenicol/sangue , Tianfenicol/farmacocinética
13.
Front Microbiol ; 10: 2430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749775

RESUMO

Potential synergism between florfenicol (FF) and thiamphenicol (TAP) was investigated for in vitro efficacy against Actinobacillus pleuropneumoniae and/or Pasteurella multocida as well as in vivo efficacy in swine. Among isolates of A. pleuropneumoniae (n = 58) and P. multocida (n = 79) from pigs in Taiwan that were tested, high percentages showed resistance to FF (52 and 53%, respectively) and TAP (57 and 53%, respectively). Checkerboard microdilution assay indicated that synergism [fractional inhibitory concentration index (FICI) ≤ 0.5] was detected in 17% of A. pleuropneumoniae (all serovar 1) and 24% of P. multocida isolates. After reconfirming the strains showing FICI ≤ 0.625 with time kill assay, the synergism increased to around 32% against both bacteria and the number could further increase to 40% against resistant A. pleuropneumoniae and 65% against susceptible P. multocida isolates. A challenge-treatment trial in pigs with P. multocida showed that the FF + TAP dosage at ratios correspondent to their MIC deduction was equally effective to the recommended dosages. Further on the combination, the resistant mutation frequency is very low when A. pleuropneumoniae is grown with FF + TAP and similar to the exposure to sub-inhibitory concentration of FF or TAP alone. The degree of minimum inhibitory concentration (MIC) reduction in FF could reach 75% (1/4 MIC) or more (up to 1/8 MIC for P. multocida, 1/16 for A. pleuropneumoniae) when combined with 1/4 MIC of TAP (or 1/8 for A. pleuropneumoniae). The synergism or FICI ≤ 0.625 of FF with oxytetracycline (47%), doxycycline (69%), and erythromycin (56%) was also evident, and worth further investigation for FF as a central modulator facilitating synergistic effects with these antimicrobials. Taken together, synergistic FF + TAP combination was effective against swine pulmonary isolates of A. pleuropneumoniae and P. multocida both in vitro and in vivo. Thus, this study may offer a potential alternative for the treatment of A. pleuropneumoniae and P. multocida infections and has the potential to greatly reduce drug residues and withdrawal time.

14.
J Fish Dis ; 42(8): 1181-1190, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31157416

RESUMO

Optimized dosing regimen is key to the effective use of antibacterials and to minimizing drug-related side effects. The current study established a pharmacokinetic-pharmacodynamic (PK-PD) model for the determination of optimal antibacterial dosing regimen in fish taken into consideration the temperature-dependent PK and the pathogen-dependent antimicrobial susceptibility, using florfenicol (FF) in Nile tilapia as an example. The calculated optimal dosages significantly varied by temperature and target MIC levels, ranging from 2.23 (MIC 1 µg/ml at 24°C) to 34.88 mg kg-1  day-1 (MIC 4 µg/ml at 32°C). The appropriateness of the calculated dosages was successfully verified by the in vivo studies. After 5 days of oral administration of the calculated optimal dosage at 24°C, the predicted plasma drug values were in line with the mean observed Cmin(ss) while at 28 and 32°C underestimation of the Cmin(ss) in a dose-dependent manner was observed and likely due to the occurrence of non-linear PK at high dosages. The averaged serum protein binding of FF was 19.1%. Our results demonstrated the appropriateness and clinical applicability of the developed PK-PD approach for the determination of optimal dosing regimens at given temperatures and MICs. Saturation metabolism and PK non-linearity of FF in tilapia warrant further study.


Assuntos
Antibacterianos/farmacologia , Ciclídeos/metabolismo , Tianfenicol/análogos & derivados , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Biológicos , Temperatura , Tianfenicol/administração & dosagem , Tianfenicol/farmacocinética , Tianfenicol/farmacologia , Água/química
15.
J Sci Food Agric ; 98(2): 751-757, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28675436

RESUMO

BACKGROUND: The flavor and quality of tea are widely believed to be associated with the pot in which the tea is made. However, this claim is mostly by experiences and lacks solid support from scientific evidence. The current study investigated and compared the chemical compositions of oolong tea made with six different teapot materials, namely Zisha, Zhuni, stainless steel, ceramic, glass and plastic. RESULTS: For each tea sample, polyphenols and caffeine were examined by HPLC-UV, volatile compounds by GC/MS, amino acids by LC/MS and minerals by ICP-MS. The results suggested that tea infusions from Zisha and Zhuni pots contain higher levels of EGC, EGCG and total catechins and less caffeine than those from ceramic, glass and plastic pots and tend to have the lowest total mineral contents, potassium and volatile compounds in tea soup. The statistical differences were not all significant among Zisha, Zhuni and stainless steel pots. CONCLUSION: Based on the overall chemical composition of the tea infusion, Yixing clay pots (Zisha and Zhuni) produce tea infusions that are presumably less bitter and more fragrant and tend to contain more healthful compounds than tea infusions from other pots. The results could partially explain why Yixing clay pots are among the most popular teapots. The beneficial effects of long-term repeated use of these teapots warrants further study. © 2017 Society of Chemical Industry.


Assuntos
Silicatos de Alumínio/química , Cerâmica/química , Vidro/química , Plásticos/química , Aço Inoxidável/química , Chá/química , Argila , Folhas de Planta/química
16.
PLoS One ; 12(8): e0183087, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797073

RESUMO

The present study was carried out to demonstrate novel use of pharmacokinetic approaches to characterize drug behaviors/movements in the vegetables with implications to food safety. The absorption, distribution, metabolism and most importantly, the elimination of tetracycline (TC) and sulfamethoxazole (SMX) in edible plants Brassica rapa chinensis and Ipomoea aquatica grown hydroponically were demonstrated and studied using non-compartmental pharmacokinetic analysis. The results revealed drug-dependent and vegetable-dependent pharmacokinetic differences and indicated that ephemeral vegetables could have high capacity accumulating antibiotics (up to 160 µg g-1 for TC and 38 µg g-1 for SMX) within hours. TC concentration in the root (Cmax) could reach 11 times higher than that in the cultivation fluid and 3-28 times higher than the petioles/stems. Based on the volume of distribution (Vss), SMX was 3-6 times more extensively distributed than TC. Both antibiotics showed evident, albeit slow elimination phase with elimination half-lives ranging from 22 to 88 hours. For the first time drug elimination through the roots of a plant was demonstrated, and by viewing the root as a central compartment and continuous infusion without a loading dose as drug administration mode, it is possible to pharmacokinetically monitor the movement of antibiotics and their fate in the vegetables with more detailed information not previously available. Phyto-pharmacokinetic could be a new area worth developing new models for the assessment of veterinary drugs in edible plants.


Assuntos
Anti-Infecciosos/metabolismo , Brassica rapa/metabolismo , Spinacia oleracea/metabolismo , Sulfametoxazol/metabolismo , Tetraciclina/metabolismo , Verduras/metabolismo , Drogas Veterinárias/metabolismo , Anti-Infecciosos/análise , Contaminação de Alimentos/análise , Sulfametoxazol/análise , Tetraciclina/análise , Drogas Veterinárias/análise
17.
Springerplus ; 4: 440, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312205

RESUMO

A 90-day feeding trial was conducted to evaluate the effects of formic acid (FA) and astaxanthin (AX) on growth, survival, immune parameters, and tolerance to Vibrio infection in Pacific white shrimp. The study was divided into two experiments. In experiment 1, postlarvae-12 were randomly distributed into six groups and then fed four times daily with six experimental diets contained 0.3 % FA, 0.6 % FA, 50 ppm AX, 0.3 % FA + 50 ppm AX, 0.6 % FA + 50 ppm AX, or none of these supplements (control diet). After 60 days of the feeding trials, the body weight of all treatment groups was not significantly different from the control group, although shrimp fed formic acid had significantly lower body weight than shrimp fed 50 ppm AX. However, the 0.6 % FA + 50 ppm AX group had a significantly higher survival rate (82.33 ± 8.32 %) than the control group (64.33 ± 10.12 %). In experiment 2, Vibrio parahaemolyticus was added to each tank to obtain a final concentration of 10(4) colony-forming units/mL. Each treatment group received the aforementioned diets for another 30 days. At the end of this experiment, there was no difference in the weight gain among all experimental groups. However, the survival rate of shrimps whose diet included FA, AX, and their combination (in the range of 45.83-67.50 %) was significantly higher than the control group (20.00 ± 17.32 %). FA-fed shrimps also had significantly lower total intestinal bacteria and Vibrio spp. counts, while immune parameters [total hemocyte count (THC), phagocytosis activity, phenoloxidase (PO) activity, and superoxide dismutase (SOD) activity] of AX-fed groups were significantly improved compared with the other groups. In conclusion, FA, AX, and their combination are useful in shrimp aquaculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA