Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 69: 103066, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947995

RESUMO

Mutations in Colony-stimulating factor 1 receptor (CSF1R) lead to CSF1R-related leukoencephalopathy, also known as Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rapidly progressing neurodegenerative disease with severe cognitive and motor impairment. In this study, a homozygous and a heterozygous CSF1R knockout induced pluripotent stem cell (iPSC) line were generated by CRISPR/Cas9-based gene editing. These in vitro models will provide a helpful tool for investigating the still largely unknown pathophysiology of CSF1R-related leukoencephalopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucoencefalopatias , Doenças Neurodegenerativas , Adulto , Humanos , Doenças Neurodegenerativas/genética , Sistemas CRISPR-Cas/genética , Neuroglia , Leucoencefalopatias/genética , Mutação
2.
CRISPR J ; 5(1): 66-79, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882002

RESUMO

Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by mutations in the Arylsulfatase-A (ARSA) gene. The enzyme plays a key role in sulfatide metabolism in brain cells, and its deficiency leads to neurodegeneration. The clinical manifestations of MLD include stagnation and decline of motor and cognitive function, leading to premature death with limited standard treatment options. Here, we describe a mutation-agnostic hematopoietic stem and progenitor cell (HSPC) gene therapy using CRISPR-Cas9 and AAV6 repair template as a prospective treatment option for MLD. Our strategy achieved efficient insertions and deletions (>87%) and a high level of gene integration (>47%) at the ARSA locus in human bone marrow-derived HSPCs, with no detectable off-target editing. As a proof of concept, we tested our mutation-agnostic therapy in HSPCs derived from two MLD patients with distinct mutations and demonstrated restoration of ARSA enzyme activity (>30-fold improvement) equivalent to healthy adults. In summary, our investigation enabled a mutation-agnostic therapy for MLD patients with proven efficacy and strong potential for clinical translation.


Assuntos
Leucodistrofia Metacromática , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Mutação , Estudos Prospectivos
3.
CRISPR J ; 4(2): 207-222, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33876951

RESUMO

Mutations in the human ß-globin gene are the cause of ß-hemoglobinopathies, one of the most common inherited single-gene blood disorders in the world. Novel therapeutic approaches are based on lentiviral vectors (LVs) or CRISPR-Cas9-mediated gene disruption to express adult hemoglobin (HbA), or to reactivate the completely functional fetal hemoglobin, respectively. Nonetheless, LVs present a risk of insertional mutagenesis, while gene-disrupting transcription factors (BCL11A, KLF1) involved in the fetal-to-adult hemoglobin switch might generate dysregulation of other cellular processes. Therefore, universal gene addition/correction approaches combining CRISPR-Cas9 and homology directed repair (HDR) by delivering a DNA repair template through adeno-associated virus could mitigate the limitations of both lentiviral gene transfer and gene disruption strategies, ensuring targeted integration and controlled transgene expression. In this study, we attained high rates of gene addition (up to 12%) and gene correction (up to 38%) in hematopoietic stem and progenitor cells from healthy donors without any cell sorting/enrichment or the application of HDR enhancers. Furthermore, these approaches were tested in heterozygous (ß0/ß+) and homozygous (ß0/ß0, ß+/ß+) ß-thalassemia patients, achieving a significant increase in HbA and demonstrating the universal therapeutic potential of this study for the treatment of ß-hemoglobinopathies.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Terapia Genética , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dependovirus/metabolismo , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Edição de Genes , Células-Tronco Hematopoéticas , Humanos , Globinas beta/genética , Globinas beta/metabolismo , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/terapia
4.
Brief Funct Genomics ; 19(3): 191-200, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31844895

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have raised among other immunotherapies for cancer treatment, being implemented against B-cell malignancies. Despite the promising outcomes of this innovative technology, CAR-T cells are not exempt from limitations that must yet to be overcome in order to provide reliable and more efficient treatments against other types of cancer. The purpose of this review is to shed light on the field of CAR-T cell gene editing for therapy universalization and further enhancement of antitumor function. Several studies have proven that the disruption of certain key genes is essential to boost immunosuppressive resistance, prevention of fratricide, and clinical safety. Due to its unparalleled simplicity, feasibility to edit multiple gene targets simultaneously, and affordability, CRISPR/CRISPR-associated protein 9 system has been proposed in different clinical trials for such CAR-T cell improvement. The combination of such powerful technologies is expected to provide a new generation of CAR-T cell-based immunotherapies for clinical application.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Imunoterapia/métodos , Humanos
5.
Blood Rev ; 40: 100641, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31761379

RESUMO

Due to pioneering in vitro investigations on gene modification, gene engineering platforms have incredibly improved to a safer and more powerful tool for the treatment of multiple blood and immune disorders. Likewise, several clinical trials have been initiated combining autologous hematopoietic stem cell transplantation (auto-HSCT) with gene therapy (GT) tools. As several GT modalities such as lentivirus and gene editing tools have a long developmental path ahead to diminish its negative side effects, it is hard to decide which modality is optimal for treating a specific disease. Gene transfer by lentiviruses is the platform of choice for loss-of-mutation diseases, whereas gene correction/addition or gene disruption by gene editing tools, mainly CRISPR/Cas9, is likely to be more efficient in diseases where tight regulation is needed. Therefore, in this review, we compiled pertinent information about lentiviral gene transfer and CRISPR/Cas9 gene editing, their evolution to a safer platform for HSCT, and their applications on other types of gene disorders based on the etiology of the disease and cell fitness.


Assuntos
Edição de Genes , Terapia Genética , Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Doenças do Sistema Imunitário , Lentivirus , Autoenxertos , Doenças Hematológicas/genética , Doenças Hematológicas/terapia , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia
6.
Bone Marrow Transplant ; 54(12): 1940-1950, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30903024

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.


Assuntos
Sistemas CRISPR-Cas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...