Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38383495

RESUMO

Synapses maintain two forms of neurotransmitter release to support communication in the brain. First, evoked neurotransmitter release is triggered by the invasion of an action potential (AP) across en passant boutons that form along axons. The probability of evoked release (Pr) varies substantially across boutons, even within a single axon. Such heterogeneity is the result of differences in the probability of a single synaptic vesicle (SV) fusing (Pv) and in the number of vesicles available for immediate release, known as the readily releasable pool (RRP). Spontaneous release (also known as a mini) is an important form of neurotransmission that occurs in the absence of APs. Because it cannot be triggered with electrical stimulation, much less is known about potential heterogeneity in the frequency of spontaneous release between boutons. We utilized a photostable and bright fluorescent indicator of glutamate release (iGluSnFR3) to quantify both spontaneous and evoked release at individual glutamatergic boutons. We found that the rate of spontaneous release is quite heterogenous at the level of individual boutons. Interestingly, when measuring both evoked and spontaneous release at single synapses, we found that boutons with the highest rates of spontaneous release also displayed the largest evoked responses. Using a new optical method to measure RRP at individual boutons, we found that this heterogeneity in spontaneous release was strongly correlated with the size of the RRP, but not related to Pv. We conclude that the RRP is a critical and dynamic aspect of synaptic strength that contributes to both evoked and spontaneous vesicle release.


Assuntos
Terminações Pré-Sinápticas , Transmissão Sináptica , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Animais , Transmissão Sináptica/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/metabolismo , Masculino , Ratos , Feminino , Ácido Glutâmico/metabolismo , Camundongos , Ratos Sprague-Dawley
2.
Nat Methods ; 20(6): 925-934, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37142767

RESUMO

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.


Assuntos
Ácido Glutâmico , Transmissão Sináptica , Camundongos , Animais , Ácido Glutâmico/metabolismo , Cinética , Neurônios/fisiologia , Sinapses/fisiologia
3.
Elife ; 112022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608410

RESUMO

Fluorescent glutamate sensors shed light on the microscopic organization underlining spontaneous neurotransmission.


Assuntos
Ácido Glutâmico , Transmissão Sináptica , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...