Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
OMICS ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818956

RESUMO

Hepatitis B virus (HBV) infection has been causally linked to hepatocellular carcinoma (HCC) in more than 50% cases. MicroRNAs (miRNAs) play cross-cutting mechanistic roles in the complex interplay between viral pathogenesis, host survival, and clinical outcomes. The present study set out to identify etiologically significant human miRNAs associated with HBV infection in liver-related pathologies leading to HCC. In diverse tissue types, we assembled 573 miRNAs differentially expressed in HBV-associated liver pathologies, HBV infection, fibrosis, cirrhosis, acute on chronic liver failure, and HCC. Importantly, 43 human differentially expressed miRNAs (hDEmiRs) were regulated in serum/plasma and liver tissue of patients with HBV-positive conditions. However, only two hDEmiRs, hsa-miR-21-5p and hsa-miR-143-3p, were regulated across all disease conditions. To shortlist the functional miRNAs in HBV-induced HCC pathogenesis, a reverse bioinformatics analysis was performed using eight GEO datasets and the TCGA database containing the list of differentially regulated mRNAs in HCC. A comparative study using these data with the identified targets of hDEmiRs, a set of unidirectionally regulated hDEmiRs with the potential to modulate mRNAs in HCC, were found. Moreover, our study identified five miRNAs; hsa-miR-98-5p, hsa-miR-193b-3p, hsa-miR-142-5p, hsa-miR-522-5p, and hsa-miR-370-3p targeting PIGC, KNTC1, CSTF2, SLC41A2, and RAB17, respectively, in HCC. These hDEmiRs and their targets could be pivotal in HBV infection and subsequent liver pathologies modulating HCC clinical progression. HBV infection is the largest contributor to HCC, and the present study comprises the first of its kind compendium of hDEmiRs related to HBV-related pathologies.

2.
OMICS ; 28(4): 165-169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588572

RESUMO

This concise review and analysis offers an initial unpacking of a previously under-recognized issue within the microRNA research and communications field regarding the inadvertent use of "has" instead of "hsa" in article titles in the microRNA nomenclature. This subtle change, often the result of grammar auto correction tools, introduces considerable ambiguity and confusion among readers and researchers in reporting of microRNA-related discoveries. The impact of this issue cannot be underestimated, as precise and consistent nomenclature is vital for science communication and computational retrieval of relevant scientific literature and to advance science and innovation. We suggest that the recognition and correction of these often inadvertent "hsa" to "has" substitution errors are timely and important so as to ensure a higher level of accuracy throughout the writing and publication process in the microRNA field in particular. Doing so will also contribute to clarity and consistency in the field of microRNA research, ultimately improving scientific veracity, communication, and progress.


Assuntos
MicroRNAs , Terminologia como Assunto , MicroRNAs/genética , Humanos , Biologia Computacional/métodos
3.
OMICS ; 27(12): 581-597, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064540

RESUMO

Hepatitis B virus (HBV) is an enveloped, hepatotropic, noncytopathic virus with a partially double-stranded DNA genome. It infects hepatocytes and is associated with progression to liver fibrosis and cirrhosis, culminating in hepatocellular carcinoma (HCC), accounting for 55% of total HCC cases. MicroRNAs (miRNAs) regulated by HBV play an important role in these pathologies. Mapping the miRNAs responsive to HBV and HBV-specific proteins, including HBV X protein (HBx) that harbor the majority of HBV-human protein interactions, could aid accelerate the diagnostics and therapeutics innovation against the infection and associated diseases. With this in mind, we used a unique annotation strategy whereby we first amassed 362 mature HBV responsive-human Differentially Expressed miRNAs (HBV-hDEmiRs). The core experimentally-validated messenger RNA targets of the HBV-hDEmiRs were mostly associated with viral infections and hepatic inflammation processes. Moreover, our annotation strategy enabled the characterization of HBx-dependent/independent HBV-hDEmiRs as a tool for evaluation of the impact of HBx as a therapeutic target. Bioinformatics analysis of the HBV-human protein-protein interactome revealed new insights into the transcriptional regulatory network of the HBV-hDEmiRs. We performed a comparative analysis of data on miRNAs gathered from HBV infected cell line studies and from tissue studies of fibrosis, cirrhosis, and HCC. Accordingly, we propose hsa-miR-15a-5p that is downregulated by multiple HBV proteins, including HBx, as a potential biomarker of HBV infection, and its progression to HCC. In all, this study underscores (1) the complexity of miRNA regulation in response to HBV infection and its progression into other liver pathologies and (2) provides a regulatory map of HBV-hDEmiRs and the underlying mechanisms modulating their expression through a cross talk between HBV viral proteins and human transcription factors.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Hepatite B/genética , Regulação Neoplásica da Expressão Gênica , Cirrose Hepática/genética , Cirrose Hepática/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA