Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(4): e0152044, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050757

RESUMO

Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community.


Assuntos
Colite/imunologia , Intestinos/microbiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Linfócitos T/imunologia , Animais , Colite/metabolismo , Camundongos , Camundongos Knockout
2.
Inflamm Bowel Dis ; 21(11): 2483-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218141

RESUMO

BACKGROUND: Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. METHODS: Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. RESULTS: Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. CONCLUSIONS: In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Colo/patologia , Neoplasias Colorretais/tratamento farmacológico , Curcumina/administração & dosagem , Mucosa Intestinal/patologia , Microbiota/efeitos dos fármacos , Animais , Azoximetano/administração & dosagem , Carcinógenos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/microbiologia , Neoplasias Colorretais/induzido quimicamente , Suplementos Nutricionais , Modelos Animais de Doenças , Imunidade nas Mucosas , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout
3.
J Biol Chem ; 290(14): 8964-74, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25648899

RESUMO

NCX1 is a Na(+)/Ca(2+) exchanger, which is believed to provide a key route for basolateral Ca(2+) efflux in the renal epithelia, thus contributing to renal Ca(2+) reabsorption. Altered mineral homeostasis, including intestinal and renal Ca(2+) transport may represent a significant component of the pathophysiology of the bone mineral density loss associated with Inflammatory Bowel Diseases (IBD). The objective of our research was to investigate the effects of TNBS and DSS colitis and related inflammatory mediators on renal Ncx1 expression. Colitis was associated with decreased renal Ncx1 expression, as examined by real-time RT-PCR, Western blotting, and immunofluorescence. In mIMCD3 cells, IFNγ significantly reduced Ncx1 mRNA and protein expression. Similar effects were observed in cells transiently transfected with a reporter construct bearing the promoter region of the kidney-specific Ncx1 gene. This inhibitory effect of IFNγ is mediated by STAT1 recruitment to the proximal promoter region of Ncx1. Further in vivo study with Stat1(-/-) mice confirmed that STAT1 is indeed required for the IFNγ mediated Ncx1 gene regulation. These results strongly support the hypothesis that impaired renal Ca(2+) handling occurs in experimental colitis. Negative regulation of NCX1- mediated renal Ca(2+) absorption by IFNγ may significantly contribute to the altered Ca(2+) homeostasis in IBD patients and to IBD-associated loss of bone mineral density.


Assuntos
Colite/genética , Interferon gama/metabolismo , Túbulos Renais Distais/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Primers do DNA , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas
4.
PLoS One ; 9(1): e85796, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465712

RESUMO

Cortactin (CTTN), first identified as a major substrate of the Src tyrosine kinase, actively participates in branching F-actin assembly and in cell motility and invasion. CTTN gene is amplified and its protein is overexpressed in several types of cancer. The phosphorylated form of cortactin (pTyr(421)) is required for cancer cell motility and invasion. In this study, we demonstrate that a majority of the tested primary colorectal tumor specimens show greatly enhanced expression of pTyr(421)-CTTN, but no change at the mRNA level as compared to healthy subjects, thus suggesting post-translational activation rather than gene amplification in these tumors. Curcumin (diferulolylmethane), a natural compound with promising chemopreventive and chemosensitizing effects, reduced the indirect association of cortactin with the plasma membrane protein fraction in colon adenocarcinoma cells as measured by surface biotinylation, mass spectrometry, and Western blotting. Curcumin significantly decreased the pTyr(421)-CTTN in HCT116 cells and SW480 cells, but was ineffective in HT-29 cells. Curcumin physically interacted with PTPN1 tyrosine phosphatases to increase its activity and lead to dephosphorylation of pTyr(421)-CTTN. PTPN1 inhibition eliminated the effects of curcumin on pTyr(421)-CTTN. Transduction with adenovirally-encoded CTTN increased migration of HCT116, SW480, and HT-29. Curcumin decreased migration of HCT116 and SW480 cells which highly express PTPN1, but not of HT-29 cells with significantly reduced endogenous expression of PTPN1. Curcumin significantly reduced the physical interaction of CTTN and pTyr(421)-CTTN with p120 catenin (CTNND1). Collectively, these data suggest that curcumin is an activator of PTPN1 and can reduce cell motility in colon cancer via dephosphorylation of pTyr(421)-CTTN which could be exploited for novel therapeutic approaches in colon cancer therapy based on tumor pTyr(421)-CTTN expression.


Assuntos
Neoplasias Colorretais/metabolismo , Cortactina/metabolismo , Curcumina/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Tirosina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Cateninas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cortactina/genética , Curcumina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Imuno-Histoquímica , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , delta Catenina
5.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G667-77, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24029465

RESUMO

Chronic inflammation and enteric infections are frequently associated with epithelial Na(+)/H(+) exchange (NHE) inhibition. Alterations in electrolyte transport and in mucosal pH associated with inflammation may represent a key mechanism leading to changes in the intestinal microbial composition. NHE3 expression is essential for the maintenance of the epithelial barrier function. NHE3(-/-) mice develop spontaneous distal chronic colitis and are highly susceptible to dextran sulfate (DSS)-induced mucosal injury. Spontaneous colitis is reduced with broad-spectrum antibiotics treatment, thus highlighting the importance of the microbiota composition in NHE3 deficiency-mediated colitis. We herein characterized the colonic microbiome of wild-type (WT) and NHE3(-/-) mice housed in a conventional environment using 454 pyrosequencing. We demonstrated a significant decrease in the phylogenetic diversity of the luminal and mucosal microbiota of conventional NHE3(-/-) mice compared with WT. Rederivation of NHE3(-/-) mice from conventional to a barrier facility eliminated the signs of colitis and decreased DSS susceptibility. Reintroduction of the conventional microflora into WT and NHE3(-/-) mice from the barrier facility resulted in the restoration of the symptoms initially described in the conventional environment. Interestingly, qPCR analysis of the microbiota composition in mice kept in the barrier facility compared with reconventionalized mice showed a significant reduction of Clostridia classes IV and XIVa. Therefore, the gut microbiome plays a prominent role in the pathogenesis of colitis in NHE3(-/-) mice, and, reciprocally, NHE3 also plays a critical role in shaping the gut microbiota. NHE3 deficiency may be a critical contributor to dysbiosis observed in patients with inflammatory bowel disease.


Assuntos
Bactérias/classificação , Colite/microbiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Fezes/microbiologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
6.
Gastroenterology ; 145(3): 613-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747339

RESUMO

BACKGROUND & AIMS: Dysregulated Ca(2+) homeostasis likely contributes to the etiology of inflammatory bowel disease-associated loss of bone mineral density. Experimental colitis leads to decreased expression of Klotho, a protein that supports renal Ca(2+) reabsorption by stabilizing the transient receptor potential vanilloid 5 (TRPV5) channel on the apical membrane of distal tubule epithelial cells. METHODS: Colitis was induced in mice via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) or transfer of CD4(+)interleukin-10(-/-) and CD4(+), CD45RB(hi) T cells. We investigated changes in bone metabolism, renal processing of Ca(2+), and expression of TRPV5. RESULTS: Mice with colitis had normal serum levels of Ca(2+) and parathormone. Computed tomography analysis showed a decreased density of cortical and trabecular bone, and there was biochemical evidence for reduced bone formation and increased bone resorption. Increased fractional urinary excretion of Ca(2+) was accompanied by reduced levels of TRPV5 protein in distal convoluted tubules, with a concomitant increase in TRPV5 sialylation. In mouse renal intermedullary collecting duct epithelial (mIMCD3) cells transduced with TRPV5 adenovirus, the inflammatory cytokines tumor necrosis factor, interferon-γ, and interleukin-1ß reduced levels of TRPV5 on the cell surface, leading to its degradation. Cytomix induced interaction between TRPV5 and UBR4 (Ubiquitin recoginition 4), an E3 ubiquitin ligase; knockdown of UBR4 with small interfering RNAs prevented cytomix-induced degradation of TRPV5. The effects of cytokines on TRPV5 were not observed in cells stably transfected with membrane-bound Klotho; TRPV5 expression was preserved when colitis was induced with TNBS in transgenic mice that overexpressed Klotho or in mice with T-cell transfer colitis injected with soluble recombinant Klotho. CONCLUSIONS: After induction of colitis in mice via TNBS administration or T-cell transfer, tumor necrosis factor and interferon-γ reduced the expression and activity of Klotho, which otherwise would protect TRPV5 from hypersialylation and cytokine-induced TRPV5 endocytosis, UBR4-dependent ubiquitination, degradation, and urinary wasting of Ca(2+).


Assuntos
Densidade Óssea , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Colite/metabolismo , Rim/metabolismo , Processamento de Proteína Pós-Traducional , Canais de Cátion TRPV/metabolismo , Animais , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/transplante , Colite/induzido quimicamente , Colite/imunologia , Glucuronidase/metabolismo , Interferon gama/metabolismo , Proteínas Klotho , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Computadorizada por Raios X , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/metabolismo
7.
J Immunol ; 189(8): 3878-93, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22972928

RESUMO

In vitro data and transgenic mouse models suggest a role for TGF-ß signaling in dendritic cells (DCs) to prevent autoimmunity primarily through maintenance of DCs in their immature and tolerogenic state characterized by low expression of MHC class II (MHCII) and costimulatory molecules and increased expression of IDO, among others. To test whether a complete lack of TGF-ß signaling in DCs predisposes mice to spontaneous autoimmunity and to verify the mechanisms implicated previously in vitro, we generated conditional knockout (KO) mice with Cre-mediated DC-specific deletion of Tgfbr2 (DC-Tgfbr2 KO). DC-Tgfbr2 KO mice die before 15 wk of age with multiorgan autoimmune inflammation and spontaneous activation of T and B cells. Interestingly, there were no significant differences in the expression of MHCII, costimulatory molecules, or IDO in secondary lymphoid organ DCs, although Tgfbr2-deficient DCs were more proinflammatory in vitro and in vivo. DC-Tgfbr2 KO showed attenuated Foxp3 expression in regulatory T cells (Tregs) and abnormal expansion of CD25(-)Foxp3(+) Tregs in vivo. Tgfbr2-deficient DCs secreted elevated levels of IFN-γ and were not capable of directing Ag-specific Treg conversion unless in the presence of anti-IFN-γ blocking Ab. Adoptive transfer of induced Tregs into DC-Tgfbr2 KO mice partially rescued the phenotype. Therefore, in vivo, TGF-ß signaling in DCs is critical in the control of autoimmunity through both Treg-dependent and -independent mechanisms, but it does not affect MHCII and costimulatory molecule expression.


Assuntos
Doenças Autoimunes/prevenção & controle , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Receptores de Fatores de Crescimento Transformadores beta/deficiência , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Colite/genética , Colite/imunologia , Colite/prevenção & controle , Células Dendríticas/patologia , Modelos Animais de Doenças , Tolerância Imunológica/genética , Imunofenotipagem , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Linfócitos T Reguladores/patologia
8.
J Mol Cell Biol ; 4(6): 409-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22773728

RESUMO

Interplay between Foxp3(+) regulatory T cells (Treg) and dendritic cells (DCs) maintains immunologic tolerance, but the effects of each cell on the other are not well understood. We report that polyclonal CD4(+)Foxp3(+) Treg cells induced ex vivo with transforming growth factor beta (TGFß) (iTreg) suppress a lupus-like chronic graft-versus-host disease by preventing the expansion of immunogenic DCs and inducing protective DCs that generate additional recipient CD4(+)Foxp3(+) cells. The protective effects of the transferred iTreg cells required both interleukin (IL)-10 and TGFß, but the tolerogenic effects of the iTreg on DCs, and the immunosuppressive effects of these DCs were exclusively TGFß-dependent. The iTreg were unable to tolerize Tgfbr2-deficient DCs. These results support the essential role of DCs in 'infectious tolerance' and emphasize the central role of TGFß in protective iTreg/DC interactions in vivo.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/imunologia , Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Complexo CD3/imunologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Transdução de Sinais/imunologia
9.
J Biol Chem ; 285(45): 34828-38, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20817730

RESUMO

Reduced bone mass is a common complication in chronic inflammatory diseases, although the mechanisms are not completely understood. The PHEX gene encodes a zinc endopeptidase expressed in osteoblasts and contributes to bone mineralization. The aim of this study was to determine the molecular mechanism involved in TNF-mediated down-regulation of Phex gene transcription. We demonstrate down-regulation of the Phex gene in two models of colitis: naive T-cell transfer and in gnotobiotic IL-10(-/-) mice. In vitro, TNF decreased expression of Phex in UMR106 cells and did not require de novo synthesis of a transrepressor. Transfecting UMR-106 cells with a series of deletion constructs of the proximal Phex promoter identified a region located within -74 nucleotides containing NF-κB and AP-1 binding sites. After TNF treatment, the RelA/p50 NF-κB complex interacted with two cis-elements at positions -70/-66 and -29/-25 nucleotides in the proximal Phex promoter. Inhibition of NF-κB signaling increased the basal level of Phex transcription and abrogated the effects of TNF, whereas overexpression of RelA mimicked the effect of TNF. We identified poly(ADP-ribose) polymerase 1 (PARP-1) binding immediately upstream of the NF-κB sites and showed that TNF induced poly(ADP-ribosyl)ation of RelA when bound to the Phex promoter. TNF-mediated Phex down-regulation was completely abrogated in vitro by PARP-1 inhibitor and overexpression of poly(ADP-ribose) glucohydrolase (PARG) and in vivo in PARP-1(-/-) mice. Our results suggest that NF-κB signaling and PARP-1 enzymatic activity cooperatively contribute to the constitutive and inducible suppression of Phex. The described phenomenon likely contributes to the loss of bone mass density in chronic inflammatory diseases, such as inflammatory bowel disease.


Assuntos
Regulação Enzimológica da Expressão Gênica , Vida Livre de Germes , Osteoblastos/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/biossíntese , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Calcificação Fisiológica/genética , Linhagem Celular , Colite/genética , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Knockout , Osteoblastos/patologia , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Elementos de Resposta/genética , Fator de Transcrição RelA/genética
10.
Gastroenterology ; 138(4): 1384-94, 1394.e1-2, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20004202

RESUMO

BACKGROUND & AIMS: Klotho (KL) is an anti-inflammatory protein that protects the endothelium from nitric oxide (NO)-induced dysfunction, reduces the expression of endothelial adhesion molecules, and potentially regulates T-cell functions. KL deficiency leads to premature senescence and impaired Ca2+/Pi homeostasis, which can lead to inflammatory bowel disease (IBD)-associated osteopenia/osteoporosis. We investigated the changes in renal expression of Kl as a consequence of colitis. METHODS: We studied 3 mouse models of IBD: colitis induced by trinitrobenzene sulfonic acid, colitis induced by microflora (in gnotobiotic interleukin-10(-/-)), and colitis induced by adoptive transfer of CD4(+)CD45RB(high) T cells. Effects of the tumor necrosis factor (TNF) and interferon (IFN)-gamma on Kl expression and the activity of its promoter were examined in renal epithelial cells (mpkDCT4 and mIMCD3). RESULTS: Renal expression of Kl messenger RNA (mRNA) and protein was reduced in all 3 models of IBD. Reduced level of KL correlated with the severity of colitis; the effect was reversed by neutralizing antibodies against TNF. In vitro, TNF inhibited Kl expression, an effect potentiated by IFN-gamma. The combination of TNF and IFN-gamma increased expression of inducible nitric oxide synthase (iNOS) and increased NO production. The effect of IFN-gamma was reproduced by exposure to an NO donor and reversed by the iNOS inhibitor. In cells incubated with TNF and/or IFN-gamma, Kl mRNA stability was unaffected, whereas Kl promoter activity was reduced, indicating that these cytokines regulate Kl at the transcriptional level. CONCLUSIONS: The down-regulation of KL that occurs during inflammation might account for the extraintestinal complications such as abnormalities in bone homeostasis that occur in patients with IBD.


Assuntos
Colite/metabolismo , Glucuronidase/antagonistas & inibidores , Interferon gama/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Transferência Adotiva , Animais , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Glucuronidase/genética , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-10/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Rim/metabolismo , Proteínas Klotho , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/fisiologia , Osteoporose/etiologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...